Preprint / Version 1

The Correlation Between Amyloidogenic Transthyretin Variants and Their Localization as Amyloids

##article.authors##

  • Emily Zhang

Keywords:

Hereditary transthyretin amyloidosis, Transthyretin Variants, Protein Aggregation, Amyloid Fibrils, Localization, TTR Structure

Abstract

Transthyretin (TTR) is a homotetrameric protein that can aggregate and misfold into amyloid fibrils when genetically mutated, resulting in hereditary TTR amyloidosis (hATTR) when deposited on organs and tissues. Unlike other types of TTR amyloidosis, hATTR is a phenotypically diverse disease in which TTR variants possess a propensity to target certain organs or tissues. This review aims to explore the current knowledge on the characteristics of phenotypically different amyloidogenic mutated TTR variants as well as a potential correlation between these variants and their localization in the body. Differentiating characteristics between central-nervous-system (CNS)-associated variants and non-CNS-associated variants have been reported on and some potential correlations have been suggested in V30M amyloidosis; however, these findings cannot be generalized to the majority of TTR variants.

References or Bibliography

Anan, I., Suhr, O. B., Liszewska, K., Baranda, J. M., Pilebro, B., Wixner, J., & Ihse, E. (2022). Amyloid fibril composition type is consistent over time in patients with Val30Met (p.Val50Met) transthyretin amyloidosis. PLOS ONE, 17(3), e0266092.

https://doi.org/10.1371/journal.pone.0266092

Ando, Y., Coelho, T., Berk, J. L., Cruz, M. W., Ericzon, B. G., Ikeda, S. I., Lewis, W. D., Obici, L., Planté-Bordeneuve, V., Rapezzi, C., Said, G., & Salvi, F. (2013). Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet Journal of Rare Diseases, 8(1), 31. https://doi.org/10.1186/1750-1172-8-31

ATTRV30M amyloidosis. (n.d.). Orphanet. https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=85447&lng=EN

Blake, C. C. F., Geisow, M. J., Oatley, S. J., Rerat, B., & Rérat, C. (1978). Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. Journal of Molecular Biology, 121(3), 339–356. https://doi.org/10.1016/0022-2836(78)90368-6

Buxbaum, J. N., & Ruberg, F. L. (2017). Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genetics in Medicine, 19(7), 733–742. https://doi.org/10.1038/gim.2016.200

Cendron, L., Trovato, A., Seno, F., Folli, C., Alfieri, B., Zanotti, G., & Berni, R. (2009). Amyloidogenic potential of transthyretin variants. Journal of Biological Chemistry, 284(38), 25832–25841. https://doi.org/10.1074/jbc.m109.017657

Coelho, T., Maurer, M. S., & Suhr, O. B. (2012). THAOS – The Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Current Medical Research and Opinion, 29(1), 63–76.

https://doi.org/10.1185/03007995.2012.754348

Gertz, M. A. (2020). Hereditary ATTR amyloidosis: burden of illness and diagnostic challenges. AJMC. https://www.ajmc.com/view/hereditary-attr-amyloidosis-burden-of-illness-and-diagnostic-challenges-article

Gertz, M. A., Benson, M. D., Dyck, P. J., Grogan, M., Coelho, T., Cruz, M. W., Berk, J. L., Planté-

Bordeneuve, V., Schmidt, H., & Merlini, G. (2015). Diagnosis, prognosis, and therapy of transthyretin amyloidosis. Journal of the American College of Cardiology, 66(21), 2451–2466.

https://doi.org/10.1016/j.jacc.2015.09.075

González-Duarte, A., & Ulloa-Aguirre, A. (2021). A Brief Journey through Protein Misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). International Journal of Molecular Sciences, 22(23), 13158. https://doi.org/10.3390/ijms222313158

Gustavsson, Å., Engström, U., & Westermark, P. (1991). Normal transthyretin and synthetic transthyretin fragments from amyloid-like fibrils in vitro. Biochemical and Biophysical Research Communications, 175(3), 1159–1164. https://doi.org/10.1016/0006-291x(91)91687-8

Hereditary amyloidosis. (n.d.). Amyloidosis Foundation. https://www.amyloidosis.org/facts/familial#attr-amyloidosis

Ihse, E., Rapezzi, C., Merlini, G., Benson, M. D., Ando, Y., Suhr, O. B., Ikeda, S. I., Lavatelli, F., Obici,

L., Quarta, C. C., Leone, O., Jono, H., Ueda, M., Lorenzini, M., Liepnieks, J. J., Ohshima, T.,

Tasaki, M., Yamashita, T., & Westermark, P. (2013). Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid, 20(3), 142–150.

https://doi.org/10.3109/13506129.2013.797890

Ihse, E., Ybo, A., Suhr, O. B., Lindqvist, P., Backman, C., & Westermark, P. (2008). Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. The

Journal of Pathology, 216(2), 253–261. https://doi.org/10.1002/path.2411

Ikeda, S. I., Takei, Y. I., Tokuda, T., Nakazato, M., & Ando, Y. (2003). Clinical and pathological findings of non-Val30Met TTR type familial amyloid polyneuropathy in Japan. Amyloid.

https://doi.org/10.1080/13506129.2003.12088567

Kanda, Y., Goodman, D. S., Canfield, R. E., & Morgan, F. J. (1974). The amino acid sequence of human plasma prealbumin. Journal of Biological Chemistry, 249(21), 6796–6805.

https://doi.org/10.1016/s0021-9258(19)42128-5

Kelly, J. W., Colón, W., Lai, Z., Lashuel, H. A., McCulloch, J. K., McCutchen, S. L., Miroy, G. J., & Peterson, S. (1997). Transthyretin Quaternary and Tertiary Structural Changes Facilitate

Misassembly into Amyloid. In Advances in Protein Chemistry (pp. 161–181).

https://doi.org/10.1016/s0065-3233(08)60321-6

Lashuel, H. A., Lai, Z., & Kelly, J. W. (1998). Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. American Chemical Society. https://doi.org/10.1021/bi981876+

Liz, M. A., Coelho, T., Bellotti, V., Fernandez-Arias, M. I., Mallaina, P., & Obici, L. (2020). A narrative review of the role of transthyretin in health and disease. Neurology and Therapy, 9(2), 395–402. https://doi.org/10.1007/s40120-020-00217-0

Luigetti, M., Romano, A., Di Paolantonio, A., Bisogni, G., & Sabatelli, M. (2020). <p> Diagnosis and Treatment of Hereditary Transthyretin Amyloidosis (hATTR) Polyneuropathy: Current Perspectives on Improving Patient Care</p> Therapeutics and Clinical Risk Management, Volume 16, 109–123. https://doi.org/10.2147/tcrm.s219979

Mitsuhashi, S., Yazaki, M., Tokuda, T., Sekijima, Y., Washimi, Y., Shimizu, Y., Ando, Y., Benson, M.

D., & Ikeda, S. I. (2005). Biochemical characteristics of variant transthyretins causing hereditary leptomeningeal amyloidosis. Amyloid, 12(4), 216–225.

https://doi.org/10.1080/13506120500352404

Refetoff, S. (2023). Figure 3. [X-ray structure of TTR. The. . .]. - Endotext - NCBI Bookshelf. National Center for Biotechnology Information.

https://www.ncbi.nlm.nih.gov/books/NBK285566/figure/tyd-serum-trnsprt-2.F3/

Roberts, J. R. (2020). Transthyretin-Related Amyloidosis Clinical Presentation. Medscape.

https://emedicine.medscape.com/article/335301-clinical

Ruberg, F. L., & Berk, J. L. (2012). Transthyretin (TTR) cardiac amyloidosis. Circulation, 126(10), 1286–1300. https://doi.org/10.1161/circulationaha.111.078915

Saelices, L., Johnson, L. M., Liang, W. Y., Sawaya, Cascio, D., Ruchala, P., Whitelegge, J. P., Jiang, L.,

Riek, R., & Eisenberg, D. (2015). Uncovering the mechanism of aggregation of human transthyretin. Journal of Biological Chemistry, 290(48), 28932–28943.

https://doi.org/10.1074/jbc.m115.659912

Saelices, L., Sievers, S. A., Sawaya, & Eisenberg, D. (2018). Crystal structures of amyloidogenic segments of human transthyretin. Protein Science, 27(7), 1295–1303.

https://doi.org/10.1002/pro.3420

Schmidt, M., Wiese, S., Adak, V., Engler, J., Agarwal, S., Fritz, G., Westermark, P., Zacharias, M., & Fändrich, M. (2019). Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nature Communications, 10(1).

https://doi.org/10.1038/s41467-019-13038-z

Sekijima, Y., Hammarström, P., Matsumura, M., Shimizu, Y., Iwata, M., Tokuda, T., Ikeda, S., & Kelly, J. W. (2003). Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous system pathology. Laboratory Investigation, 83(3), 409–417.

https://doi.org/10.1097/01.lab.0000059937.11023.1f

Sekijima, Y., Wiseman, R. L., Matteson, J., Hammarström, P., Miller, S. R., Sawkar, A. R., Balch, W. E.,

& Kelly, J. W. (2005). The biological and chemical basis for Tissue-Selective Amyloid disease.

Cell, 121(1), 73–85. https://doi.org/10.1016/j.cell.2005.01.018

Si, J., Kim, B., & Kim, J. H. (2021). Transthyretin Misfolding, A Fatal Structural Pathogenesis

Mechanism. International Journal of Molecular Sciences, 22(9), 4429.

https://doi.org/10.3390/ijms22094429

Suhr, O. B., Lundgren, E., & Westermark, P. (2017). One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition. Journal of Internal Medicine, 281(4), 337–347. https://doi.org/10.1111/joim.12585

Transthyretin amyloidosis. (n.d.). MedlinePlus. https://medlineplus.gov/genetics/condition/transthyretin-amyloidosis/ Transthyretin-mediated (ATTR) amyloidosis. (n.d.). Alnylam.

https://www.alnylam.com/patients/amyloidosis#:~:text=hATTR%20Amyloidosis%20At%2DA%2DGlance&text=Affects%20~50%2C000%20people%20worldwide%2C%20though,be%20inherited%20from%20one%20parent

Westermark, P. (2005). Aspects on human amyloid forms and their fibril polypeptides. FEBS Journal, 272(23), 5942–5949. https://doi.org/10.1111/j.1742-4658.2005.05024.x

What is hereditary ATTR amyloidosis (HATTR)? (2020, January 21). HATTR Guide.

https://www.hattrguide.com/about-hattr-amyloidosis/

Zampino, S., Sheikh, F. H., Vaishnav, J., Judge, D. P., Pan, B., Daniel, A., Brown, E., Ebenezer, G. J., &

Polydefkis, M. (2023). Phenotypes associated with the VAL122ILE, LEU58HIS, and Late-Onset VAL30MET variants in patients with hereditary transthyretin amyloidosis. Neurology, 100(19),

e2036–e2044. https://doi.org/10.1212/wnl.0000000000207158

Downloads

Posted

10-23-2023

Categories