Preprint / Version 1

Predicting Wildfire Severity Classes Using Machine Learning

##article.authors##

  • Paul Zhou

Keywords:

Machine learning, Wildfires, Predictive AI, United States

References or Bibliography

Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113

Al-Bashiti, M. K., & Naser, M. Z. (2022, August 13). Machine learning for wildfire classification: Exploring Blackbox, explainable, symbolic, and smote methods. Natural Hazards Research. https://www.sciencedirect.com/science/article/pii/S2666592122000373#tbl1

Heinselman, M. L. (1981, January 1). Fire and succession in the conifer forests of northern North America. SpringerLink. https://link.springer.com/chapter/10.1007/978-1-4612-5950-3_23

Jain, P., Coogan, S. C. P., Subramanian, S. G., Crowley, M., Taylor, S., Flannigan, M. D., (2020, July 28). A review of Machine Learning Applications in wildfire science and management. Environmental Reviews. https://cdnsciencepub.com/doi/full/10.1139/er-2020-0019

Li, Y. (2021, June 21). Yangland/rtfps: RtFPS an interactive map that visualizes and predicts wildfires in the US. GitHub. https://github.com/yangland/rtfps

Li, Y., Mulyono, H., Chen, Y., Lu, Z., & Chan, D. (2021, May 23). RtFPS: An interactive map that visualizes and predicts wildfires in the US. Papers With Code. https://paperswithcode.com/paper/rtfps-an-interactive-map-that-visualizes-and

McKinney, W., & others. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56). https://conference.scipy.org/proceedings/scipy2010/mckinney.html

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Curran Associates, Inc. Retrieved from http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (1970, January 1). Scikit-Learn: Machine learning in Python. Journal of Machine Learning Research. https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

Shmuel, A., & Heifetz, E. (2022, July 3). Global wildfire susceptibility mapping based on machine learning models. MDPI. https://www.mdpi.com/1999-4907/13/7/1050

Tedim, F., McGee, T. K., & Leone, V. (2019). Extreme wildfire events and disasters: Root causes and new management strategies. Elsevier. https://doi.org/10.1016/C2017-0-03309-8

Tatman, R. (2020, August). 1.88 Million US Wildfires. https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires

US Census Bureau. (2021, October 8). County adjacency file. Census.gov. https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html

Marta Yebra, Xingwen Quan, David Riaño, Pablo Rozas Larraondo, Albert I.J.M. van Dijk, and Geoffrey J. Cary. 2018. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sensing of Environment 212 (2018), 260 – 272. https://doi.org/10.1016/j.rse.2018.04.053

Downloads

Posted

09-23-2023

Categories