CRISPR/Cas9 as a Treatment for Cancer

Authors

  • Tiffany Shaljian California Lutheran University
  • Dr. Chad Barber California Lutheran University

DOI:

https://doi.org/10.47611/jsr.v12i1.1863

Keywords:

cancer, CRISPR-Cas9, cancer treatment, oncology

Abstract

For decades, cancer treatments such as chemotherapy, radiotherapy, and surgery have been used to treat various types of cancer. These treatments have also taken a significant toll on the general health of the patient and do not always result in complete remission, which is why new methods of treatment are required. The many experimental methods of CRISPR/Cas9, a novel treatment using genetic engineering, have allowed researchers to discover its ability to successfully treat several types of cancers. With any discovery of treatment, continued research is required to determine the abilities of CRISPR/Cas9 among the other forms of cancer. However, the data collected thus far has shown that it is successful in being used as a cancer therapeutic, even among some of the more aggressive types of cancer. The use of CRISPR/Cas9 has shown proof of principle in the field of oncological research in treating a variety of cancers, with hopes for complete remission. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Dr. Chad Barber, California Lutheran University

Associate Dean, Undergraduate Education and Professor of Biology

References or Bibliography

Aguirre, A. J., Meyers, R. M., Weir, B. A., Vazquez, F., Zhang, C. Z., Ben-David, U., Cook, A., Ha, G., Harrington, W. F., Doshi, M. B., Kost-Alimova, M., Gill, S., Xu, H., Ali, L. D., Jiang, G., Pantel, S., Lee, Y., Goodale, A., Cherniack, A. D., Oh, C., Kryukov, G., Cowley, G., Garraway, L., Stegmaier, K., Roberts, C., Golub, T., Meyerson, M., Root, D., Tsherniak, A., and Hahn, W. C. (2016). Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer discovery, 6(8), 914–929. https://doi.org/10.1158/2159-8290.CD-16-0154.

Azmi, A. S., Khan, H. Y., Muqbil, I., Aboukameel, A., Neggers, J. E., Daelemans, D., Mahipal, A., Dyson, G., Kamgar, M., Al-Hallak, M. N., Tesfaye, A., Kim, S., Shidham, V., M Mohammad, R., Philip, P. A. (2020). Preclinical Assessment with Clinical Validation of Selinexor with Gemcitabine and Nab-Paclitaxel for the Treatment of Pancreatic Ductal Adenocarcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 26(6), 1338–1348. DOI: 10.1158/1078-0432.CCR-19-1728.

Cheng, R., Li, F., Zhang, M., Xia, X., Wu, J., Gao, X., Zhou, H., Zhang, Y., Shen, S., Kang, T., Liu, Z, Xiao, F., Yao, H., Xu, J., Yan, C., and Zhang, N. (2022). A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers. Cell Research, Advance Online Publication. https://doi.org/10.1038/s41422-022-00726-7.

Clough, C.A., Pangallo, J., Sarchi, M., Ilagan, J.O., North, K., Bergantinos, R., Stolla, M.C., Naru, J., Nugent, P., Kim, E., Stirewalt, D.L., Subramaniam, A.R., Abdel- Wahab, O., Abkowitz, J.L., Bradley, R.K., Doulatov, S., 2022. Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1- mutant myelodysplastic syndrome. Blood, 139, 2038–2049. DOI: 10.1182/blood.2021012652.

Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer. World journal of gastroenterology, 22(44), 9694–9705. DOI: 10.3748/wjg.v22.i44.9694.

Lin, A., Giuliano, C. J., Sayles, N. M., and Sheltzer, J. M. (2017). CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials. eLife, 6, e24179. https://doi.org/10.7554/eLife.24179.

Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), 1234–1257. DOI: 10.1080/10717544.2018.1474964.

Parrasia, S., Zoratti, M., Szabò, I., & Biasutto, L. (2021). Targeting pancreatic ductal adenocarcinoma (PDAC). Cell Physiol Biochem, 55, 61-90. DOI: 10.33594/000000326.

Pellagatti, A., and Boultwood, J. (2022). Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment. Advances in biological regulation, Advance online publication. DOI: 10.1016/j.jbior.2022.100920.

Szlachta, K., Kuscu, C., Tufan, T., Adair, S. J., Shang, S., Michaels, A. D., Mullen, M. G., Fischer, N. L., Yang, J., Liu, L., Trivedi, P., Stelow, E. B., Stukenberg, P. T., Parsons, J. T., Bauer, T. W., and Adli, M. (2018). CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and Models Cellular Drug response. Nature Communications, 9 (1), 1-13. https://doi.org/10.1038/s41467-018-06676-2.

Wang, Z., Li, N., Feng, K., Chen, M., Zhang, Y., Liu, Y., Yang, Q., Nie, J., Tang, N., Zhang, X., Cheng, C., Shen, L., He, J., Ye, X., Cao, W., Wang, H., and Han, W. (2021). Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell. & Mol. Immunology, 18(9), 2188–2198. https://doi.org/10.1038/s41423-021-00749-x.

Wong, J., Gruber, E., Maher, B., Waltham, M., Sabouri-Thompson, Z., Jong, I., Luong, Q., Levy, S., Kumar, B., Brasacchio, D., Jia, W., So, J., Skinner, H., Lewis, A., Hogg, S. J., Vervoort, S., DiCorleto, C., Uhe, M., Gamgee, J., Opat, S., Gregory, G., Polekhina, G., Reynolds, J., Hawkes, E., Kailainathan, G., Gasiorowski, R., Kats, L., and Shortt, J. (2022). Integrated clinical and genomic evaluation of guadecitabine (SGI-110) in peripheral T-cell lymphoma. Leukemia, 36(6), 1654–1665. https://doi.org/10.1038/s41375-022-01571-8.

Yang, Z., Wu, H., Lin, Q., Wang, X., and Kang, S. (2022). Lymphopenic condition enhanced the antitumor immunity of PD-1-knockout T cells mediated by CRISPR/Cas9 system in malignant melanoma. Immunology letters, 250, 15–22. DOI: 10.1016/j.imlet.2022.09.004.

Yoshiba, T., Saga, Y., Urabe, M., Uchibor, R., Matsubara, S., Fujiwara, H., and Mizukami, H. (2019). CRISPR/Cas9 mediated cervical cancer treatment targeting human papillomavirus E6. Oncology Letters, 17, 2197-2206. DOI: 10.3892/ol.2018.9815.

Zhang, M., Eshraghian, E. A., Jammal, O. A., Zhang, Z., and Zhu, X. (2020). CRISPR technology: The engine that drives cancer therapy. Biomedicine & Pharmacotherapy, 113, 111007. DOI: 10.1016/j.biopha.2020.111007.

Published

02-28-2023

How to Cite

Shaljian, T., & Barber, C. (2023). CRISPR/Cas9 as a Treatment for Cancer . Journal of Student Research, 12(1). https://doi.org/10.47611/jsr.v12i1.1863

Issue

Section

Research Projects