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Abstract

Roughly 10% of the global adult population is diabetic, diabetes is
a metabolic condition which results in chronically high blood sugar lev-
els. Patients with diabetes are at substantially higher risk for several
serious health conditions including diabetic retinopathy (DR). DR is a
vision-threatening disease which affects 35% of diabetic patients and is
projected to affect 160 million people by 2045. Diabetic patients should
be screened for retinopathy every one to two years; however, in many
countries patients are not regularly screened and therefore not treated.
Globally, the lack of rapid and cost-effective screening strategies for DR
leads to underdiagnosis and loss of vision. Machine learning tools of-
fer a solution in developing automated models to diagnose DR from eye
fundus images. In published literature, convolutional neural networks
(CNNs) are the state-of-the-art model for classification of DR. More re-
cently, transformer models have been applied and shown superior perfor-
mance. Text transformer models have resulted in the proliferation of tools
such as ChatGPT, which provide contextual understanding and ability to
identify dependencies. In this study, we perform a head-to-head compar-
ison between CNN and vision transform models for classifying DR. We
demonstrate that transformer models diagnose DR with a substantially
higher accuracy, ranging up to 13% as measured by the F1 performance
metric. Furthermore, we identify optimal training parameters for diagno-
sis of DR, training a total of 19 machine learning models reaching a test
set F1 score performance of 90% on a dataset of 35,130 fundus images
with 20% of images withheld for independent testing.

1 Introduction

Diabetic retinopathy (DR), is a vision-threatening microvascular disease caused
by significant damage to the blood vessels in the retina and is one of the most
frequent complications of diabetes mellitus [NPS22]. DR is a leading cause of

∗Dubai International Academy Emirates Hills
†Advised by: Dr. Parsa Akbari, University of Cambridge

1



preventable blindness and vision impairment among the working-age population,
with a prevalence of about 35% among those with diabetes mellitus. By 2045,
it is estimated that 783 million people will be diabetic [Fed21] and 160 million
people could be affected by DR [TTY+21]. The prevalence increase of DR by
2030 is notably concentrated in the low and middle income countries in regions
such as Asia, South America and the MENA. [TW22]. This disease burden will
require effective DR screening strategies to align with the changing demographic.
About 56% of new cases could be reduced with timely monitoring of severity
and treatment [TMS20].

DR can be graded into 5 stages according to morphological changes that oc-
cur in the retina as the disease progresses: non-proliferative diabetic retinopathy
(NPDR), mild NPDR, moderate NPDR, severe NPDR and Proliferative Dia-
betic Retinopathy [DSS17] (Fig. 1). Screening is imperative to identify the
stage of DR - with timely referral, the progress of DR can be slowed and severe
vision-impairment can be prevented [WSK+18]. Despite this, there is a shortage
of ophthalmologists to screen millions of retinal images for each diabetic patient,
especially in developing countries. [RLW+20] [WSK+18]. Here, technology can
provide an alternate solution to traditional screening methods by physicians by
reducing the cost and manpower required to screen patients for PDR.

Ocular telemedicine is a concept which has been proposed to make DR
screening more cost efficient. This involves local clinics sending images of the
retina to a central ‘grading center’ where experts can grade the level of DR
severity [HSCA16]. Hand-held imaging devices are another solution and have
achieved high specificity and sensitivity compared to traditional retinal cam-
eras [PDKB22]. However, in both solutions, trained clinical professionals are
still required to analyze the retinal images. An automated system would con-
duct the initial screening of retinal images to detect signs of DR even when
ophthalmologists are unavailable.

An automated system must recognize the changes to retinal vasculature
caused by the various stages of DR as seen on fundus images. As seen in Fig. 1,
DR affected retinal images show characteristic color and patchy variations on the
fundus image, due to morphological changes in the retina. These changes include
lesions called MicroAneurysms (MA), Hard EXudates (HEX), Soft Exudates
(SE), HEMorrhages (HEM), and an increase in blood vessels. MAs are seen in
one quadrant in mild NPDR, and it progresses to vessel blockage, and presence
of lesions in moderate NPDR. Severe NPDR presents with venous beading and
a large number of HEMs. This is a precursor to ‘neovascularization’ of the PDR
stage [NPM+22], or to the formation of new blood vessels on the retina, which
may eventually lead to blindness (Fig. 1).

In recent decades, artificial intelligence has been trained to classify DR stages
from fundus images. Early models used ML-based classifiers like Random Forest
(RF) ( [CSC+14], K-Nearest Neighbours (KNN) [NvGRA07] , Support Vector
Machines (SVM) [SAFL10] and Artificial Neural Networks (ANN) [UDH+04].
These methods required efficient prior hand-engineered feature extraction, which
could introduce errors into complex fundus imaging. [NG18] evaluated 7 auto-
mated retinal image analysis (ARIA) systems to classify DR. These models had
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Figure 1: Images of the retina showing stages of diabetic retinopathy, graded
into 5 classes ranging from 0-4, as per the EyePACS dataset [GPC+16].

sensitivities of 87%-95%, but had limited specificities of 50%-69%, thereby lead-
ing to a high number of false positives that negatively impacted the clinical
application of these systems [NG18].

Deep learning (DL), also known as deep neural networks, is an emerging field
which relies on multiple layers of processing to extract high level features from
input images. The application of DL was previously limited by the availability of
computational processing power. However recent innovations including cheaper
compute costs, cloud computing, and specialized ASIC’s which are processing
units optimized for ML, have made DL more broadly available. DL has a wide
range of applications from computer vision and finance to autonomous vehicles
[DDD20]. It has also been applied in medicine and in recent years has produced
favorable results in the diagnosis of DR in fundus imaging, with sensitivities of
80.28% to 100.0% and specificities of 84.0% to 99.0% [NLA+19].

Convolutional Neural Networks (CNNs) are popular in deep learning for
image classification tasks, including medical imaging [BR18]. The design of
CNNs maximizes their efficiency by focusing on a smaller section of the data;
however, this compromises their performance when capturing broader patterns
and relationships across spaced out parts of an image [SKZ+23].

A CNN of the Inception-v3 architecture [GPC+16] and CNN-based residual
learning [GL17] were used to detect DR. To classify fundus images into DR sever-
ity stages, the literature shows several CNN architectures were used. A CNN was
used to identify exudates [YXK17], transfer learning and hyperparameter tuning
was done on the CNNs of AlexNet, VGGNet, GoogleNet and ResNet [WLZ18],
a DenseNet architecture with hyperparameter tuning was trained [RPC+20] and
an attention mechanism coupled with a modified DenseNet-169 architecture was
used [FFAH22].
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Recently, transformer models have gained popularity in a variety of applica-
tions. An example of this rising interest in transformers is ChatGPT - an ML-
tool which uses a transformer architecture to do NLP [Ope23]. Transformers
are efficient in identifying and understanding the relationship between separate
elements within data and are capable of parallel processing, which means they
are able to be trained more rapidly [IEE+23]. In addition to text, the success
of transformers in Natural Language Processing (NLP) prompted the creation
of vision transformers (ViT) which can be applied to image data to carry out
computer vision tasks [HGL+23]. These traits make ViTs adept at doing tasks
that require an understanding of the context, thus making them valuable not
only in the field of NLP but also in medical imaging classification and segmen-
tation [SKZ+23]. Consequently, ViTs may be a prospective model architecture
for DR detection through fundus images.

[WHX+21] and [AAKJTT+21] demonstrated that attention-based ViTs
provide high accuracy for DR classification. [AKCS23] used an ensemble of
Vision Transformers (ViT), Data efficient image Transformers (DeiT), Bidirec-
tional Encoder representation for image Transformer (BEiT) and Class-Attention
in Image Transformers (CAIT) to stage DR severity. Transformers gained
prominence only recently and hence, there is limited literature on the effect
of hyperparameters of ViTs as compared to CNNs, which have been studied
much more rigorously. Therefore, this study aims to compare the performance
of a ViT and CNN architecture and find the optimal hyperparameters for a ViT
model to classify DR fundus images.

In this study, we benchmarked DeiT, a recent ViT model, against ResNet-
18, a classical CNN model, for binary classification of retinal fundus images
into no or mild nonproliferative DR and moderate nonproliferative or more
severe DR. This classification was chosen as it is recommended by the American
Diabetes Association and the International Council of Ophthalmology that cases
of moderate NPDR or more severe stages are referred to an ophthalmologist
[WSK+18] [SCD+17]. Therefore, the model would be used as a preliminary
screening tool to help refer patients while the specific diagnosis of the severity
of DR could be done by a medical professional upon consultation. We used the
EyePACS Dataset, consisting of 35,130 fundus images [GPC+16].

To address the disparity in literature for the application of the transformer
models in DR classification, we identified the optimal hyperparameters for the
DeiT architecture and compared its performance to ResNet-18. The models
were evaluated on their F1 scores, which is a metric that measures the har-
monic mean of the precision and recall of the model, penalizing any extreme
values from either [HST+22]. The results indicated that the transformer mod-
els showed superior performance across a range of hyperparameters including
learning rate and batch size. The F1 scores showed that the DeiT model per-
formed considerably better than the ResNet-18 model and that a learning rate
of 1E-04, batch size 32, and epoch of 6 gave the best model performance.
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2 Results

2.1 DeiT model performance showed 23% improvement in
F1 score with optimal learning rate

We investigated the impact of learning rates on the performance of two model
architectures - DeiT and ResNet-18. DeiT is a vision transformer while ResNet-
18 is a convolutional neural network. The learning rate governs how quickly a
model learns. A higher learning rate allows for the model to take larger steps
to improve, however this may result in the optimal solution being overshot. In
contrast, smaller learning rates may eventually reach a desirable result but are
less time-efficient. To find the optimal value for the learning rate, each model
was trained with 5 learning rates: 1E-03, 1E-04, 1E-05 and 1E-06. Both the
ResNet-18 model and the DeiT model showed a similar trend in performance
based on learning rates (Fig. 2).

For the DeiT model, learning rates of 1E-04 and 1E-05 demonstrated superior
performance showing 40% improvement in test F1 score compared to higher
learning rates. However, learning rates lower 1E-04 and 1E-05 deteriorated the
ability of the model to detect moderate NPDR or more severe cases with a 7%
decrease in model performance when tested with a learning rate of 1E-06. For
the ResNet-18 model, similar to the DeiT model, the learning rates of 1E-04 led
to better overall model performance. Below and above those values, the model
performance was much poorer.

A significant finding was that the DeiT model consistently outperformed
ResNet-18 across all learning rates (Fig. 2), with a 13% higher Test F1 score.
ViT generally excels in understanding the bigger context in images as compared
to CNN models, which could explain the results.

Figure 2: Graphs showing the effect of different learning rates on the perfor-
mance for the DeiT and ReNet-18 models. This figure shows the Test F1 scores
for the no or mild NPDR and moderate NPDR or more severe DR categories
and overall cost of the DeiT and ResNet-18 models. The DeiT model generally
performs better than the ResNet-18 model, with the F1 score being higher on
average and the precision being lower. It can also be seen that the optimal
learning rate for both models is 1E-04 as the F1 graphs peak while the cost
function is low at that point.
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2.2 Batch size of 32 improved model test F1 score by 50%

Deep learning models are trained with the stochastic gradient descent algorithm
which performs each iteration of training using a single batch of data. Therefore,
at each training iteration, improvements in model performance are incremental
and dependent only on images present in the batch. Batch size is a critical
training parameter which determines the number of images the model is trained
or tested on in each iteration. Finding the correct batch size is important,
as this fundamentally affects the training of the model. Larger batches result
in a greater amount of information informing each training iteration; however,
larger batch sizes are computationally intensive and are slow to execute. Smaller
batch sizes are computationally efficient; however, less information informs each
training iteration. Furthermore, smaller batch sizes lead to fluctuations in model
training which may be beneficial in searching the model parameter space and
resulting in superior performance, or may lead to ineffective training iterations
and poor performance.

We experimented with a range of values, starting at 8 and increasing in
factors of 2, testing batch sizes of 8, 16, 32, and 64 to assess their impact on the
model’s performance. We found that larger batch sizes tended to improve model
performance, with a batch size of 32 giving the best overall performance (Fig.
3). While increasing batch size to 64 increased the model’s ability to identify no
or mild DR, it negatively impacted its ability to diagnose moderate NPDR or
more severe DR by 10%, which is counterproductive to the aim of this model.

Figure 3: Graph showing the effect of different batch sizes on the performance
of the DeiT model. This figure shows the Test F1 scores for the no or mild
NPDR and moderate NPDR or more severe DR categories and overall cost of
the DeiT and ResNet-18 models. The DeiT model generally performs better
than the ResNet-18 model, with the F1 score being higher on average and the
precision being lower. It can also be seen that the optimal learning rate for both
models is 1E-04 as the F1 graphs peak while the cost function is low at that
point.
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2.3 Epoch of 6 improved test F1 score by 7%

Epochs control the number of times the model iterates through all the training
fundus images, where a single iteration over all images in the training set is
one epoch. Training the model across multiple epochs often results in superior
performance as the model parameters are further improved from the training
examples. The intention of model training is for the model parameters to be
tuned to detect patterns in the training set which will be predictive of DR in
future fundus images. However, training across too many epochs will result in
overfitting, because the resulting model is over-adjusted for the training set and
identifies patterns which are specific to the peculiarities of the training set but
do not generalize to new data. Overfitting is detected by assessing the model
on a testing set which is not utilized for model training.

An ideal number of epochs avoids overfitting or underfitting by having either
too large or too small a number of epochs. To determine the optimal number of
epochs, the DeiT model was tested on epochs of 2, 4, 6, 8 and 10. There was no
significant relationship between the number of epochs and model performance,
but the model achieved the highest average test F1 Score of 90% and 70% for
each test class with 6 iterations (Fig. 4). The model performance decreased by
an average of 7%, above and below 6 epochs.

Figure 4: Graph showing the effect of different epochs on the performance for
the DeiT model. This figure shows the Test F1 scores for no or mild NPDR
and moderate NPDR or more severe DR categories and overall cost of the DeiT
models. The optimal epoch was identified as 6 epochs as it showed the best F1
and cost results.

3 Discussion

In the study we have demonstrated that vision transformer models show su-
perior predictive performance in diagnosis of DR compared to classical CNNs,
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with a 13% higher test F1 accuracy. We identified the optimal values for the
DeiT model parameters such as learning rate, batch size and number of epochs.
We analyzed the test F1 score for 19 machine learning models and found that
hyperparameters learning rate of 1E-04. Additionally, a larger number of epochs
of 6 and larger batch sizes of 32 proved to show better model performance. The
DeiT model effectively classified images into both classes. A challenge that we
encountered was the imbalance in the number of images in each category in the
EyePACS dataset. There were over 22,000 images in the no or mild NPDR cat-
egory and approximately 5400 images within the moderate DR or more severe
DR category. Although the classes were weighted to reduce the effect of the
imbalance, there was still a significant difference in the ability of the models to
classify the images - the model performed 20% better at classifying images into
no DR or mild NPDR than the moderate or more severe cases. However, overall,
the DeiT model performed better than the ResNet-18 model, demonstrating the
promise of vision transformers in DR classification applications. DeiT models
can potentially reduce the need for manual screening.

Previous works largely focused on CNNs, with only a few papers on the
applications of ViTs to DR classification [WHX+21] [AAKJTT+21] [AKCS23]
. Recent research has shown that transformers provide significant advantages
compared to CNNs, including providing contextual understanding and making
connections between disparate features in the input image [MDB23]. However,
there have not been direct comparisons between the performance of ViT and
CNN models for diagnosis of DR. In this study, we aim to bridge this gap by
doing a comprehensive comparison between a classical CNN and a recent ViT
model.

Expanding on the work in this paper, DeiT models can be applied to multi-
class DR classification tasks based on the severity of clinical symptoms. How-
ever, to accomplish this work with high accuracy and to improve the feature
extraction capabilities, a larger dataset can be used, with a more balanced num-
ber of images for each class. More preprocessing techniques can be explored to
arrive at better convergence of the loss function. The high imbalance in classes
can be further addressed by custom data augmentation techniques such as rota-
tion, adjusting brightness, contrast etc. of the images [AKCS23]. Additionally,
variable illuminations and saturations of the images are a barrier to accuracy of
predictions. Luminosity normalization is a pre-processing technique that could
be applied to the images to improve the problem of variable illuminations. To
deal with zero pixels, using the generic cropping functions may cause a loss of
image data and disturb fundus geometry. Using a custom cropping window of
variable lengths depending on the resolution of the images will preserve crucial
information which will help in convergence of the loss function [RPC+20].

4 Methods

The Pytorch Package in the Visual Studio Code environment was used to run
the models. The experiment was run on fundoscopy images from the EyePACS
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database using two deep learning networks - DeiT, which is a vision transformer
and ResNet-18, which is a convolutional neural network.

Fundoscopic examination is a routine clinical examination of the retina using
an ophthalmoscope, and is used to detect numerous eye diseases including dia-
betic retinopathy. EyePACS is a telemedicine healthcare provider which offers
diabetic retinopathy screening solutions in the United States. The EyePACS
dataset includes 5 million fundoscopy images of a diverse population of healthy
patients and those with various stages of diabetic retinopathy [GPC+16]. 35,130
EyePACS color fundus images were utilized for the analysis, with 28,102 images
set for training and 7,028 for testing. We ensured that all pairs of eyes from a
single patient were kept together in the training and testing sets to ensure the
testing set is independent from the training set.

While the demographic variables for the EyePACS dataset are not published,
an EyePACS dataset of 9963 images from 4997 patients used in a paper had an
average age of 54.1 (±11.3 ) years, with 62.2% women [GPC+16] The EyePACS
fundus images are labelled in five classes as Normal (0), mild (1), moderate
(2), severe (3), and proliferative DR (4) as shown in Fig. 1. Each image was
rated by a clinician for the stage of DR present according to the International
Clinical Diabetic Retinopathy severity scale (0-4) [GPC+16]. For our model, we
divided these classes into 2 categories based on recommended screening strate-
gies [WSK+18] [SCD+17].

The performance of a deep learning model will be dependent on the quantity
and integrity of the dataset used for training the model [ZLLS21]. The EyePACS
dataset images are of various sizes and have pre-existing image noise and incon-
sistencies including the presence of artefacts, images being out of focus, under-
exposed or overexposed [TPM23]. The images were acquired by various cameras
supported by the EyePACS platform, with field views of 40◦ − 50◦ [KOM+20]
and have different resolutions [TPM23]. There was no standard orientation of
the images and they could be inverted as well, making it difficult to tell left
from right eye images.

To improve the accuracy and reduce error rates of deep learning networks, a
set of operations for pre-processing the images was required to train the model
[ZLLS21]. Initially, the data was pre-processed by first converting them to
tensors, then resizing the images to a 224 x 244 resolution and finally using the
Random Horizontal Flip transformation to add more variance to the dataset.

Training deep learning models for high performance requires efficient opti-
mization of the hyperparameters of the model. First we trained both DeiT and
ResNet-18 models across learning rates between 1E-06 to 1E-03. Increasing the
number of epochs or the batch size will ensure the model is adequately trained,
thereby converging to the optimal solution and improving the accuracy. The
DeiT model performed consistently better than the ResNet-18 model, over a
range of learning rates, thus the DeiT model was chosen for further experimen-
tation. We varied the batch size of the DeiT model from 4 to 64 and epochs
from 2 to 10. The run time for the model varied due to increasing the number of
epochs and decreasing the learning rate, which made the model take longer to
train. The metrics, including F1, precision and recall, were logged for both the
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training and testing data. We generated a summary of the overall performance
of the model under various hyperparameters to be visualized as graphs. We
ran 13 different trials, making changes to the stated hyperparameters to iden-
tify which gave the best model performance. Every three iterations, the model
performance was evaluated using the testing dataset of 7027 images.

4.1 Residual Neural Networks (ResNets)

Experimental work has shown that deeper networks are crucial for better per-
formance but are more difficult to train and accuracy gets saturated beyond a
point. Residual blocks offer a solution to the problem. First, the skip connection
sets a short-cut to backpropagate the gradient as shown in Fig 5 . Second, due
to the skip connection, instead of fitting the original identity mapping H(x), the
stacked layers need to fit or learn only the residual mapping of F (x) = H(x)−x.

Figure 5: ResNet-18 architecture with skip connections in the identity blocks
and convolutional blocks. Each layer consists of identical convolutional net-
works. When the input and output dimensions differ, convolutional skip con-
nection is used, indicated in dotted lines.

If the identity mapping H(x) = x is the desired underlying mapping, the
residual mapping becomes F (x) = 0, which makes the learning process eas-
ier - the weights and biases of the upper weight layer have to be pushed to
zero. Residual blocks can forward propagate faster due to the skip connec-
tions [ZLLS21]. Thus, H(x) = F (x) + x, adding the output from previous
layers to later layers. yi = F (xi,Wi) + xi represents each block, with xi and
yi representing the input and output vectors of the layer. xi+1 = f (yi) where
f denotes a ReLU activation function. F is a residual function [HZRS16]. The
ResNet-18 architecture used in this paper has 18 layers. The first 2 layers are a
7× 7 convolutional layer with 64 output channels and a stride of 2 , followed by
a 3× 3 max-pooling layer with a stride of 2 . ResNet-18 has 4—residual block
modules. Each residual block has two layers, making F =W2σ (W1x), where σ
denotes a ReLU function (Fig. 6). Each block consists of 2 convolution layers,
batch normalization, and corresponding ReLU activations. The convolutional
layers have 3 × 3 filters. When the feature map size is halved, the number of
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filters is doubled, and down-sampling is with a stride of 2. The end of the net-
work is a 1000-way fully connected layer with softmax and an average pooling
layer. The shortcut connections are introduced to each pair of 3 × 3 filters as
shown in Fig. 5 [HZRS15].

The standard ResNet residual block is called the Identity Block (Fig. 6).
It is modified into the Convolutional Block when the input activation does not
have the same dimension as the output – usually 1 X 1 convolutions are done,
with a stride of 2 to match dimensions (Fig. 7) [HZRS15].

Figure 6: Identity Block - When input and output dimensions are equal, no
additional layer in skip connection path

Figure 7: Convolutional Block - When input and output dimensions are not
equal, 1 × 1 convolutional layer added in skip connection path

4.2 Data-efficient Image Transformers (DeiT)

Transformer models were initially applied in natural language (text) process-
ing applications using an ‘attention’ mechanism which allowed modelling of
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elements within sentences of text without regard to their distance in the se-
quence [VSP+17]. Vision transformers applied these concepts to image process-
ing and classification [DBK+20]. However, compared to classical CNNs, ViT
models depend on pre-training using large amounts of data. Data-efficient im-
age transformers aim to address the requirement for large amounts of training
data by using a knowledge distillation technique to train a modified transformer,
built on the ViT architecture proposed by [DBK+20], which transfers knowledge
from a larger CNN to a smaller model. This reduces the training requirement
to about 3 days and also requires less infrastructure. [TCD+20]

DeiTs are image transformers that propose a novel distillation procedure
built upon the transformer block proposed by [DBK+20] and are trained on the
ImageNet dataset only [TCD+20] . This contrasts with ViT which needs pre-
training on hundreds of millions of images of curated data from many datasets
showing high performance [DBK+20]. DeiTs are an effective method as they re-
quire lower volume of data and memory footprint for a given accuracy [AKCS23],
making them a less computationally expensive architecture.

The knowledge distillation procedure using attention is the central principle
of DeiT where the transfer of knowledge happens from ‘the teacher’ model to
the ‘the student’ model [TCD+20]. The ‘teacher’ is RegNet Y–16GF, a CNN
pre-trained on ImageNet. The student is a modified ViT architecture where the
output of the ‘teacher’ is passed as an input to the ‘student’.

In DeiT, a new distillation procedure is introduced where the teacher’s hard
decision is taken as the true label. DeiT decomposes each RGB image into a
series of N patch tokens of 16 × 16 pixels each and converts it into a linear
layer of 16 × 16 × 3 = 768 dimensional representation. A new distillation token
is included which interacts with the class and patch tokens through the stack
of transformer encoder layers (Fig. 8). The encoder layers contain Multi-head
Self Attention (MSA) and Feed Forward Network (FFN) modules [TCD+20]
[DBK+20]. The hard decision is illustrated below.

Let yt = argmaxc Zt(c) be the hard decision of the teacher. The task of the
distillation token is to reproduce the hard decision yt predicted by ’the teacher’
and the class token has to reproduce the true label y. DeiT’s loss function is
given by:

LhardDistill
global =

1

2
LCE (ψ (Zs) , y) +

1

2
LCE (ψ (Zs) , yt)

Zs and Zt are the logit functions of the student and teacher models. ψ is the
softmax function, and LCE is the cross-entropy loss. Distillation tokens and the
class token learn by back propagation and the distillation allows the model to
learn from the teacher output [TCD+20], and this process is more efficient and
requires less computational power than other vision transformers.

Following the training and testing of the chosen DeiT model, which shows its
efficient performance in classifying diabetic retinopathy fundus images, it holds
promise for application in telemedical or national screening programs to screen
for severity of DR.
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Figure 8: DeiT distillation procedure - The distillation token interacts with
the class and patch token through the transformer encoders. The encoders in
DeiT consist of repeated layers of self-attention and feed-forward network (FFN)
blocks. The objective of the distillation token is to reproduce the teacher’s
prediction instead of the true label. The distillation and class tokens learn by
back propagation.

4.3 Performance Metrics

The F1 score is a measure of a model’s accuracy which takes into account both
precision and recall. Precision and recall calculate the percentage of diagnoses
which are correct and the percentage of DR patients which are diagnosed re-
spectively. Furthermore, we calculate the F1 metric per outcome category and
report all independently. The purpose of utilizing the F1 metric is to consider
both true positive and false negative results by the model.

F1 =
2× precision × recall

precision + recall

5 Conclusion

The incidence of diabetes in the global population has reached 10%, patients
with diabetes are at high risk for diabetic retinopathy and should be tested
for DR every one or two years according to standard clinical guidelines. The
lack of rapid and cost effective methods for diagnosis of DR is a major limiting
factor for providing appropriate patient care [WWC+22]. Our study has shown
that recent vision transformer methods have superior performance to a CNN
model for the classification of DR. We have identified optimal model training
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parameters for the DeiT architecture. Our work demonstrates the ability of
ViTs to improve the accuracy of automated DR classification.
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