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Abstract

We introduce metadata integration in the training process for demen-
tia diagnoses as weak label information using Weakly-Supervised Mod-
ified Knowledge Distillation with No Labels (WS-MDINO). Using WS-
MDINO, we fine-tuned the parameters of the original vision transformer
pre-trained with DINO on ImageNet. Our model achieved equivalent to
the state-of-the-art epoura rformance of 92% accuracy in the OASIS1
dataset under leave-one-out cross-validation. We visualized the perfor-
mance of the model by extracting average self-attention maps and average
brains from the dataset, showing that the model had learned meaningful
structural information about demented brains.

1 Introduction

Alzheimer’s Disease (AD) is a leading cause of dementia, affecting millions
worldwide. Even to date, it has no proper medical treatment and can only
be controlled with continuous medication [KMS+22]. Early diagnoses and early
intervention are beneficial for both the patients and caretakers, for the treat-
ment would be most effective and less costly [RL19]. An automated model
would aid the early detection of dementia immensely as it provides a fast,
cheap, and accurate reference for the diagnosing process. Past works have used
MRI scans of patients’ brains to develop image recognition models for AD diag-
noses [SN18, SMP+21,FDH+19,CGAA22,AR14, SJS+23, IZ18]. However, past
models have faced challenges such as poor interpretability, which is a symptom
of most deep learning and CNN architectures, and non-optimal integration of
clinically free metadata [SN18]. Many previous works failed to perform cross
validation because it is too computationally expensive (for each training split
the model needed to be re-trained completely) [FDH+19,IZ18]. To address these
limitations, we developed a model with a self-supervised method which can in-
corporate the metadata as weak labels [CZWM+22] with a vision transformer
(ViT) backbone [DBK+20].

∗Advised by: Jan Cross-Zamirski
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While many previous works used the Convolutional Neural Network (CNN),
we use a small ViT with 8×8 pixel patch size (ViT-S/8) introduced by Dosovit-
skiy et al. [DBK+20]. Compared to traditional CNN models, ViTs on medical
datasets have been shown to capture long-range relationships in the image,
provide built-in insight into the performance of the model with self-attention
maps, and provide superior adaptive-learning with the self-attention mecha-
nism [MHSS21].

Even though ViTs require a significantly larger dataset than CNNs to achieve
these qualities [MHSS21], researchers can perform transfer learning from the
pre-trained weights on ImageNet [DDS+09], which consists of millions of la-
beled images. Past work on automatic AD diagnoses using a ViT achieved an
overall accuracy of 83.27%, with 85.07% specificity and 81.48% sensitivity on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [HKK23].

While the typical training methods for both CNNs and ViTs are supervised,
this paper uses an unsupervised training approach, WS-MDINO, a modified
version of the DINO [CTM+21] training method that integrates the metadata
of the subjects into the training process . We trained a multi-perception classifier
and a K-nearest-neighbor (KNN) classifier using the features extracted from the
ViT to produce the final prediction.

Compared to other models, our ViT trained with the WS-MDINO method:

• Is a multi-modal model that integrates the clinically available metadata of
the patients into the training process, achieving better overall performance

• Provides less noisy self-attention maps for the image data than supervised
ViTs [CTM+21]

• Allows more complicated validation methods, such as K-fold and leave-
one-out validation, without extra time and computing resources, because
the training process of the feature extractor is not supervised, and, thus,
does not require a train-test split.

2 Background

2.1 AD classification

There are many past efforts to use machine learning to diagnose AD in early
stages based on MRI scans. An early work in automatic diagnoses used Struc-
ture Tensor Analysis to extract features from the MRI scan and used Support
Vector Machine to classify stages of dementia [AR14]. It achieved 88.6% two-
class (demented, non-demented) accuracy, 87.6% sensitivity, and 84.8% speci-
ficity. While this method required relatively less computational resources as
it did not use neural network, it could not effectively integrate the clinically
free metadata into the training process. It also lacked three-class classification.
Later works used Convolutional Neural Network for the image recognition task.
Fulton et al. [FDH+19] took the center 51 slices of the axial plane of the 3-D
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image and trained a ResNet50 model for three-class (non-demented, very-mildly-
demented, mildly-demented), achieving a 98.99% accuracy. However, this result
is not convincing as it did not use a K-fold validation and it is likely that the
slices of the same brain were assigned to both training and validation sets, caus-
ing data leakage. Using training-test split and 5-fold cross validation, we could
not reproduce the results listed in the paper. Islam et al. [IZ18] trained three
separate CNN models for each of the sagittal, coronal, and axial views of the
brain, and combined the prediction of each model using vote. Their proposed
model achieved 93% accuracy, 93% sensitivity, and 94% specificity. However,
they failed to use N-fold validation as they considered it too computationally
expensive, adding greater randomness to their performance. Newer studies in-
troduced the ViT approach [ZK22], achieving 86% accuracy on ADNI dataset
with convolutional voxel values as the input. Compared to CNN models, ViTs
had better interpretability and could capture more long-range relations in the
image.

A comprehensive review [WTSDM+20] about machine learning models in
AD classification presented the challenges faced in past classification works.
It showed that many works only did a train-test set split and did not per-
form cross validation, making their performance less convincing. It also showed
that many past works, such as the work we failed to reproduce [FDH+19], suf-
fered data leakage, knowingly or not, which caused inaccurate representation
of models’ performance. The review showed that many proposed performances
were not reproducible and, in fact, if with proper train-set split and valida-
tion method, most proposed models would be outperformed by Support Vector
Machine (SVM) with image score.

2.2 Machine Learning

2.2.1 Vision Transformer (ViT)

Inspired by transformers in Natural Language Processing (NLP), the ViT [DBK+20]
is a newer network architecture for computer vision. ViTs first split the inputted
image into small patches (the original paper provided 8 × 8 pixel patches and
16× 16pixel patches, but other dimensions are possible). Patches are then lin-
early projected to a flattened vector and, along with learnable class tokens, fed
to the transformer encoder, which consists of multi-head attention layers and
multi-layer-perception (MLP) layers. A normalization layer is added to each of
the two main layers to improve performance and training efficiency. The multi-
head attention layer consists of multiple self-attention heads, whose outputs are
concatenated for the MLP layer. Each self-attention head can be visualized
with a self-attention map. All the embedding are fed to a final MLP classifier
for final classification. This structure is illustrated in Figure 1.

Compared to traditional CNN architectures, ViTs are more adaptive for
image distortion and can capture long-range relations. However, this comes at
a cost of heavy dependency on augmentations, hyper-parameter tuning, and
large datasets [MHSS21]. For medical datasets, which can be relatively small,
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Figure 1: Vision Transformer architecture - figure from the original paper
[DBK+20]

researchers primarily use or fine-tune ViTs pretrained on ImageNet [MHSS21].

2.2.2 Knowledge Distillation with No Labels (DINO)

Caron et al. proposed Knowledge Distillation with No Labels (DINO) as a self-
supervised training scheme [CTM+21]. Similar to knowledge distillation, DINO
trains two networks, the student network gθs with parameters denoted as θs and
the teacher network gθt with parameters denoted as θt. DINO uses special data
augmentation that, for each image x, generates 2 global crops covering large
areas, denoted as xg

1 and xg
2, and n local crops covering small areas, denoted as

V (n is a hyper-parameter). DINO feeds the teacher network only global crops,
and the student network global crops and local crops. DINO trains the student
network to maximize its agreement with the teacher network by minimizing the
Cross Entropy Loss:

Loss =
∑

x∈{xg,1,xg,2}

∑
x′∈V
x′ ̸=x

−Pt(x)log(Ps(x
′)) (1)

Where P (x) represents the probability distributions for the output, the Tem-
perature Softmax:

P (x)(i) =
exp (g(x)(i)/τ)∑K

k=1 exp (g(x)
(k)/τ)

(2)

Where K is the dimensionality of the output and τ is the temperature,
different for student and teacher, denoted as τs and τy (τ > 0). The teacher
parameters are updated with an exponential moving average (ema) based on
the student parameters:
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θt ← λθt + (1− λ)θs (3)

Where λ is the momentum hyper-parameter. While DINO also works with
other architectures such as ResNet, it performs best with a ViT backbone.
DINO with a ViT backbone presents clearer semantic segmentation information
than supervised ViTs and works excellently with k-NN classifiers using extracted
embeddings.

2.2.3 Weak Supervised form of DINO (WS-DINO)

Cross-Zamirski et al. proposed weak supervision during DINO (WS-DINO)
training using weak labels on medical datasets which have clinically free meta-
data [CZWM+22]. WS-DINO first creates a pseudo class for each image using
the metadata without using the real label. Different from DINO, WS-DINO
then sources local views V from images of the same pseudo class. Minimizing
the same loss function as Eq. 1, WS-DINO not only maximizes the agreement
between the teacher and student networks, but also maximizes the agreement
between images of the same pseudo class, therefore achieving weak supervision.

WS-DINO provides an elegant solution of integrating metadata into the
training process. Therefore, it is especially powerful for datasets with relevant
guiding metadata.

3 Methods

The implementation of our methods is available in a GitHub repository1. We
summarize our training and evaluation in Figure 2.

3.1 Weakly-Supervised Modified DINO (WS-MDINO)

We propose Weakly-Supervised Modified DINO (WS-MDINO) training method
for brain images. WS-MDINO is an adaptation of the WS-DINO method on
brain images which allows the model to cluster subjects directly using weak la-
bels while preserving important brain features such as symmetry and alignment.

Given the great structural similarity between aligned brain images, we con-
sider random resized crop, the primary cropping method used in WS-DINO and
DINO, unsuitable for brain image, as the model would interpret the augmented
structural variation as a more significant factor than the actual information the
images carry.

Therefore, WS-MDINO feeds the teacher network one global view of image
x, denoted as vt, and the student network n global view of n different images of
the same pseudo class, denoted as Vs. It is trained to maximize the agreement
between images of the same pseudo class by minimizing the Cross Entropy Loss:

1https://github.com/powerLEO101/WS-MDINO OASIS1
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Figure 2: Summary of data preprocessing, training, feature extraction, and
evaluation pipeline

Table 1: Caption

Loss =
∑
x∈Vs

−Pt(vt)log(Ps(x)) (4)

3.2 Dataset analysis

We selected the OASIS1 dataset for our study [MWP+07]. The OASIS1 dataset
provides a cross-sectional collection of 436 subjects aged from 18 to 96. For each
subject, the dataset provides a 176×208×176 pixel 3-D image of the MRI scan
of each subject and a table of subjects’ metadata. We present the details and
completeness of the metadata in Table 2.

The CDR in the metadata is used as the ground-truth label, separating the
image data into 4 classes: 0 being healthy, 0.5 being very mildly demented, 1
being mildly demented, and 2 being moderately demented.
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Column Name Data Completeness
Identification (ID) Complete
Gender (M/F) Complete

Dominant Hand (Hand) Complete
Education (Educ) Missing 201 rows

Socioeconomic Level (SES) Missing 220 rows
Mini Mental State Examination Score (MMSE) Missing 201 rows

Clinical Dementia Rating (CDR) Complete
Estimated Total Intracranial Volume (eTIV) Complete
Normalize Whole Brain Volume (nWBV) Complete

Atlas Scaling Factor (ASF) Complete
Delay Missing 416 rows

Table 2: Summary of OASIS Data Completeness

3.3 Data preprocessing

In the dataset, there are 336 healthy subjects, 70 very mildly demented subjects,
28 mildly demented subjects, and 2 moderately demented subjects. We merged
the mildly demented and moderately demented subjects into one class in-line
with other studies [FDH+19,SMP+21].

Our model was mostly unaffected by the missing data except for the MMSE
score. We noticed that all subjects without an MMSE score are non-demented.
Therefore, we automatically gave them a full score of 30 for their MMSE score,
signifying they are cognitively healthy [DPC17].

We created two kinds of pseudo class for each subject: 1) pseudo class only
using the MMSE score and 2) pseudo class using a combination of the MMSE
score and Age, the compound class. The detailed pseudo class can be found in
the csv file in our Github Repository.

The raw images for subjects are atlas-registered gain field-corrected, brain
masked, and re-sampled to 1mm isotropic voxels [MWP+07]. The dataset pro-
vides the processed file for this part of the preprocessing, which can be found in
the “T88 111” folder in the dataset. We took one middle slice of the sagittal,
coronal, and axial planes of the 3-D MRI image, converted them into arrays,
and stored them in separate files for each subject.

By taking the center three slices of each plane of the brain, we converted the
original 3-D images into 2.5-D images, which:

• Preserve the important features for diagnosing dementia (the ventricles
and hippocampus area).

• Allow greater compatibility with the existing computer vision architec-
tures and weights, such as ResNet and ViTs

• Have a much smaller size compared to the original dataset, demanding
less computational resources and decreasing the training time, compared
to 3-D models such as [SMP+21].
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3.4 Data Augmentation

We used limited data augmentations to preserve important features of the
brains. After several trials with various data augmentations such as resizing
and translating, we concluded that, because each brain image is so structurally
similar to another, the model would interpret the noise caused by the data
augmentation a more significant information than the actual information the
images carry. For this reason, we found that models would generally perform
better on brain datasets like OASIS1 with little data augmentation.

Therefore, unlike the original DINO implementation2, we avoided rotation
and translations to preserve the symmetrical structure of the brain; We avoided
color jitter, solarization, and Gaussian noise for the model to understand that
the input is single-channel, even though the gray-scale channel is copied into
RGB channels to fit the ViT structure and has a black background. For each
global crop, we resized the image to 256× 256 pixels and centered cropped the
image to 224× 224 pixels.

3.5 Network Details and Training

We trained separate models for each of the sagittal, coronal, and axial planes.
For each model we used the same hyper-parameters as follows: a ViT-S/8 back-
bone; each augmented image data gives one 224×224 pixel global crop and three
other 224 × 224 pixel global crops of images of the same pseudo class; teacher
momentum is 0.99; gradient norm for gradient clipping is 3.0; teacher tempera-
ture is 0.04 without warm-up; student temperature is 0.07; center momentum is
0.8; batch size is 4; weight decay is none; optimizer is adamW; warm-up epoch
is 10 epochs; learning-rate is 3e−6 to 2e−6 with a cosine scheduler; number of
total epochs is 40; any other parameters are the same as the original DINO im-
plementation. We initialized each model with the weights from DINO trained
on ImageNet.

We extracted 384 features from the ViT head for each plane of view and
combined them into a vector with 1152 elements. Finally we performed a Z-
score normalization on the combined feature vector.

The model was trained with a INTEL I7-12700K GPU and NVIDIA RTX3080
GPU. The total training took approximately two hours.

3.6 Evaluation, visualization, and interpretation

To evaluate the features extracted by our model, we trained a KNN classifier
(k=2) with leave-one-out cross validation. Leave-one-out cross validation is the
logical extreme of cross validation and is the most unbiased. We evaluate the
KNN classifier using 3-class accuracy, 2-class accuracy, sensitivity, and speci-
ficity.

To visualize the performance of our model, we performed a Principle Com-
ponents Analysis (PCA) and reduced the dimensionality to 2. We then plotted

2https://github.com/facebookresearch/dino
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Method 3-class Acc. 2-class Acc. Sensitivity/Specificity
ResNet50 76.9% 79.6% 46%/87%

WS-MDINO with MMSE labels 84% 89% 64%/96%
WS-MDINO withCompound labels 85% 92% 71%/98%
WS-MDINO with Real labels (CDR) 100% 100% 100%/100%

CNN with vote [IZ18] 3 N/A 93% 93%/94%
2-D CNN [SMP+21] N/A 84% N/A
3-D CNN [SMP+21] N/A 84% N/A

Forward Neural Network [JKK17] N/A 90% 92%/87%

Table 3: Comparison of our work to existing works

each subject in a 2D space with 3 different colors representing non-demented,
very mildly demented, and mildly demented and moderately demented in Figure
3, 4, and 5

To interpret our model, we extracted the self-attention maps for each subject.
We then took the average pixel value of self-attention maps of subjects in each
class and produced an average self-attention map for each class. Taking the
average pixel value, we also evaluated an average brain for subjects in each
class in Figure 6.

4 Results and discussion

4.1 Performance

We trained a ResNet50 on the same images set using 5-fold cross-validation as
our baseline model, a WS-MDINO model using the real labels (CDR) as a proof
of concept, a WS-MDINO model with the MMSE score as the pseudo class, and
a WS-MDINO model with compound classes using both MMSE and age. We
present our models’ performances with other existing best performing models
in Table 3.

We show that our model achieved the equivalent of state-of-the-art perfor-
mance using compound labels under leave-one-out cross validation, a stricter
metrics compared those of other works. It is worth noticing that, even though
the WS-MDINO trained with real labels achieved 100% accuracy, it is not a
valid network and only serves to be a proof of concept, because CDR is not a
weak label and would cause data leakage.

4.2 Class representation

We used PCA to reduce the dimensionality to 2 and scattered subjects with
three colors representing three classes (Purple = Non-demented, Mint = Very
Mildly Demented, Yellow = Mildly to Moderately Demented). We present the
class representation plots for three stages of the fine-tuning (no fine-tuning,
20 epochs of fine-tuning, and 40 epochs of fine-tuning) to show the clustering
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process under weak supervision in Figure 3, 4, and 5. We show that the weak
supervision with weak labels is effective as subjects cluster over time in the 2-D
representation. It is worth noticing that, even though we used 7 weak labels
in total, our model clustered subjects into roughly 4 clusters. This shows that,
while our model learns from the weak labels, it also effectively learns from the
similarities between images of the same class.

4.3 Average self-attention maps and brains

The self-attention map is a powerful feature of ViTs which visualizes the weights
of the self-attention heads. Such visualization is very useful as it shows the
features that the model has learned, which simplify the fine-tuning process and
allow the researchers to interpret the model. We present average self-attention
maps from the fine-tuned weights and average brain for each of the sagittal,
coronal, and axial views in Figure. 6.

Using average self-attention maps and brains, we show that our model has
learned meaningful information from brains with different stages of dementia.
In general, demented subjects have shrunken hippocampus and cerebral cortex,
and enlarged ventricles [IZ18]. In Figure 6, we show that our model successfully
captured the aforementioned features for demented subjects. From the sagit-
tal and coronal views, we show that the area around the hippocampus is the
most highlighted by the attention map. From the axial view, we show that the
ventricle is the most highlighted and the area around it, the cerebral cortex,
is also more highlighted than other structures. Thus, we show that our model
has learned the significance of the hippocampus, cerebral cortex, and ventricles
in the diagnoses of dementia. It is also notable that the highlighted areas for
demented subjects are generally dimmer than those for non-demented subjects,
signifying our model has learned the structural difference between demented
and non-demented brains.

5 Conclusion

WS-MDINO is a powerful method of integrating metadata as weak supervi-
sion for DINO training, allowing models to learn effectively from both images
and metadata. Capable of generating 3-class and 2-class predictions with high
accuracy, our dementia diagnosis model trained using WS-MDINO with com-
pound weak labels successfully captures important features of demented and
non-demented brain. Our model also provides insight into weakly supervised
training methods for datasets that are sensitive to data augmentations, such as
brain MRI scan datasets.

While the OASIS1 dataset used in this study is a relatively small dataset,
there are larger datasets for dementia diagnoses such as ADNI4which consists
of thousands of subjects. Future work should encompass testing our method on
such larger datasets. However, this is beyond the scope of this study. It is also

4https://adni.loni.usc.edu/
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possible that a stronger pseudo class could further improve the model’s perfor-
mance. However, it is important that the pseudo classes do not have dataset-
specific information, which decreases the model’s generalization ability. Thus,
we suggest building pseudo classes as simple as possible and following existing
studies on metadata’s influence on the subject, such as [RSH+13]. For future
work, WS-MDINO has the potential to seamlessly combine machine learning
approaches with classical approaches, which are reflected in the creation of one
or multiple pseudo classes.

Figure 3: Class representation in 2-D space using ImageNet weights with no
fine-tuning

Figure 4: Class representation in 2-D space using ImageNet weights fine-tuned
with WS-MDINO with compound label after 20 epochs
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Figure 5: Class representation in 2-D space using ImageNet weights fine-tuned
with WS-MDINO with compound label after 40 epochs

Figure 6: Average attention maps and brains from sagittal, coronal, and axial
view, produced from WS-MDINO using compound labels (left: average brain;
right: average self-attention map)
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