
Application of Machine Learning Models to

Predict Property Prices

Pranav Pathak ∗

March 22, 2023

Abstract

The real estate market has always been filled with uncertainty. There
are many players and economical factors that continuously affect prop-
erty prices. For many home buyers, it is hard to estimate the house prices
due to the numerous factors involved. The authors of this paper aim to
develop an algorithm to help with the estimations. Thus, the research
presented in this paper aims to develop and test machine learning mod-
els, then analyze the results of these models as applicable to the housing
market. We studied and worked with two datasets, and developed nu-
merous models to apply the best model for the data. We evaluated the
results of the models and compared them to each other to draw inferences
and conclusions. The results for one dataset were better compared to the
results for the other dataset. Similarly, the predicted property prices were
closer to the actual prices for one dataset than for the other dataset. We
observed multiple linear and non-linear trends within these datasets by
closely studying the results. Throughout our study, we have found that
machine learning can be used to predict property prices with varying de-
grees of effectiveness. The results mainly depend on the quality of the
data, and how well they reflect the values of the people.

1 Introduction

1.1 A Brief Introduction to Machine Learning

Machine Learning is a vast field and has varied applications. It is applied to
solve problems where data analysis is not humanly possible. The problems that
machine learning can solve are usually divided into three main types: supervised
learning, unsupervised learning, and semi-supervised learning [BD17]. This pa-
per focuses on using supervised learning. All three types of problems involve
using data to teach a model to learn from the data to make future predictions.
However, a key factor in supervised learning is that it involves features and
labels. Labels are the results or outcomes that we want to predict. Features are

∗Advised by: Dr. Guillermo Goldsztein

1

the characteristics or variables that are used to predict the label. Essentially,
features are the factors influencing the label. The set of data containing the
features and the labels used to teach the model is called the training set. Each
training set contains examples. Examples are one set of features and labels.
For instance, if we were predicting the number of people in a country based on
certain features, one country would be one example.

1.2 Notation

This paper uses specific notation that is important to know to fully grasp
the processes and methods that we used. Some notation used in this paper
is: x1, x2, . . . , xn, denotes the features, where n is the number of features.
y1, y2, . . . , yk, denote the labels, where k is the number of labels.
µ represents the average of a set of numbers
σ represents the standard deviation of a set of numbers
L represents the number of layers in a neural network n[l] denotes the number
of nodes in layer l of a neural network

f [1](n[1]), f [2](n[2]), f [3](n[3]), . . . , f [L− 1](n[L− 1]) (1)

denotes the architecture of a neural network

1.3 Thesis Statement

The real estate market has always been filled with uncertainty. There are many
players and economic factors that continuously affect property prices. For many
home buyers, it is hard to estimate the house prices due to the numerous factors
involved. The authors of this paper aim to develop an algorithm to help with
the estimations. Thus, the research presented in this paper aims to develop
and test machine learning models, then analyze the results of these models as
applicable to the housing market.

We applied supervised learning to two housing prices datasets. Throughout
this paper, we will describe the processes that we used, and the outcomes of
applying supervised learning to these datasets. The aim of this research is
to compare the results within and between the regions. We believe that the
research method is extendable to the larger housing market, as we have seen it
work for two different geographies. We support the method of obtaining data
from official real estate organizations, so as to get validated and current results.
We also believe that a housing market expert or a real estate investor could be
consulted in order to improve the data in the datasets.

2

2 Analyzing the Datasets

2.1 King County Dataset [Cha18]

The first dataset that we studied was the King County dataset. King County
is located in Washington state. The dataset was obtained from Kaggle, and
contained the sale prices of houses fromMay 2014 to May 2015. Over the last five
years in King County, house prices have generally increased. The median home
sale price has grown from around $600,000 to around $850,000, representing
an average compounded growth of 7.2% per year. The number of homes sold
has mostly stayed within the range of 4,500 homes sold and 1,500 homes sold
over the past five years [Red]. Similarly, during 2012 - 2017, the median home
sale price increased by 53%. This represents an annual compounded growth of
6.3% per year. King County is also a large area spanning many cities, including
Seattle. Seattle is a hub for many major companies, which has contributed to
accelerating house prices [Aff18].

First, we read the dataset into a pandas dataframe. This allowed us to
manipulate and study the dataset easily. We did this by using the pandas
.read csv() method. The dataset contains the following features: id, date,
price, bedrooms, bathrooms, sqft living, sqft lot, floors, waterfront, view, condi-
tion, grade, sqft above, sqft basement, yr built, yr renovated, zipcode, lat, long,
sqft living15, sqft lot15. The features mean:

1. The id feature represents the identifier of the house [Spa20].
2. The date feature describes the date during which the house was sold.
3. The price gives the price for which the house was sold [Spa20].
4. The bedrooms and bathrooms features give the number of bedrooms and

bathrooms in the property respectively.
5. The sqft living and the sqft lot features give the amount of living area in

the property in square feet [Spa20] and the square footage of the land on which
the house is built [Spa20].

6. The floors feature represents the number of floors in the property.
7. The waterfront feature indicates whether the property is a waterfront

property or not.
8. The view feature measures the quality of the view.
9. The condition feature describes the current state of the property, while

the grade feature describes the level of excellency of the build of the house
[Spa20].

10. The sqft above feature gives the amount of square feet above ground
[Spa20], and the sqft basement feature gives the size of the basement in square
feet.

11. The yr built feature gives the year that the property was built.
12. The yr renovated feature gives the year that the property was renovated,

if it ever was.
13. The zipcode feature gives the zip code of the property.
14. The lat and long features give the latitude and longitude of the property.

3

15. The sqft living15 and sqft lot15 features give the average of the proper-
ties’ living areas and lot sizes of the nearest 15 houses in square feet [Spa20].

In this dataset, the label is the price, and the other columns are the features.
We did not need all the features; we deleted some of them. We did not need the
id feature, as we could not use it in any way to train the model. Using the date,
zipcode, lat (latitude) and long (longitude) features in the model are part of the
next step. However, for this paper, we deleted these features. We included the
floor feature, as that does influence house prices. We also used the condition
and grade features. The yr built feature was used to train the machine learn-
ing models. Now, we will examine the other features as well. We deleted the
sqft living15 and sqft lot15 features as we believed that these features might
not be as helpful for the model. The bedrooms and bathrooms features are
important factors affecting house prices. So, we kept these features. Lastly, the
size of the lot of the property is also quite important, so we have included it.

Square feet living:

Figure 1: King County living square feet feature

Only one of the values for the amount of living area was less than 300. A
living area less than 300 ft2 did not make much sense. However, the example
whose ‘sqft living’ was less than 300 square feet did not have any bedrooms. So,
we ignored this particular example, as we deleted it later.

Waterfront:

Figure 2: King County waterfront feature

Figure 3: King County waterfront feature

4

This column had only zeros and ones (true or false). However, almost all of
the properties were not waterfront properties, so it was quite hard to make the
set “balanced” for this feature. A set is balanced for a feature if the values for
the features are roughly evenly distributed. For this feature, around 99.25% of
the values were zero. So, we deleted this feature. A similar problem occurred
with the view feature, and we deleted the view feature as well.

Square feet basement:
There were some houses that had basements with sizes between 0 ft2 and 300
ft2. So, we replaced these basement sizes with zero square feet, as their areas
are negligible.

Year renovated:

Figure 4: King County living square feet feature

The values for the year renovated feature are reasonable. Note that the year
renovated is 0 if the house has not been renovated [Spa20]. However, only 914
houses were renovated. The year renovated can be an important factor in de-
termining the price of a property. Therefore, we trained a few models with the
year renovated feature, and a few models without the year renovated feature.
This allowed us to determine if there is a relationship between house prices and
the year in which a house was renovated.

2.2 The India Dataset [Tri22]

The second dataset that we worked with was the India dataset. This dataset
was composed of housing data from the cities of Hyderabad, Pune, Kolkata and
Gurgaon, and was also obtained through Kaggle. These four cities are major
cities in India and have similar economies due to the booming software indus-
tries in these cities. This led to an increase in housing prices. In the past, these
cities were considered as second tier cities. However, the software industry ex-
pansion led to a more attractive housing market. Before this, housing prices
were still increasing, but at a slower rate. In the first three months of 2022, the
average housing prices went up by 7% in Hyderabad [Ser22].

Now, we gathered the dataset and studied it to understand it. However,
the dataset in Kaggle contained housing data for many cities. We chose four
cities whose housing markets were similar in pricing. Then, we combined the
housing data for these four cities in an excel sheet, which we read into a pandas

5

dataframe by using the pandas.read excel() method.

The dataframe contained the following features:
Unnamed: 0, Type of plot, City, Total Price, Unit, Rupee per area, Type,
Open Date, Description, Area, Apartment, and Project Name. These features
mean:

1. The Unnamed: 0 feature contains indices from the excel sheet.
2. The Type of plot feature describes the type of apartment.
3. The City feature describes the city in which each apartment is located.
4. The Total Price (the label) describes the selling price of each apartment.
5. The Unit feature describes the unit in which the price of each apartment is
(lakhs or crores).
6. The Rupee per area feature describes the cost of each square feet in the
apartment [Tri22].
7. The Type feature describes the status of the apartment (ready or under
construction).
8. The Open Date feature contains many different values.
9. The Description feature contains strings that describe the property.
10. The Area feature gives the size of the property in square feet [Tri22].
11. The Apartment feature contains the same values as the Type of Plot fea-
ture.
12. The Project Name feature describes the name under which the property
was built.

Similar to the King County dataset, we deleted some of the features in this
dataset. We deleted the ‘Unnamed: 0’ feature, as they are unusable indices
from the excel sheet. We deleted the description feature, as for this paper, we
decided not to include it. We used the area feature, as we believed that it was
important. We deleted the apartment feature as it was the same as the type of
plot feature. Finally, we deleted the project name feature because we believed
that it would not be very important to include in the model. This feature might
have also hindered the model, as a new project name for a new apartment would
likely confuse the model. We deleted the city feature as we felt that it would
be hard to use in order to achieve a more general model for property prices.
However, we have explained this more in the observations and analysis section.
Lastly, we deleted the unit feature, as the unit was already included in the label.

Type of plot:

Figure 5: King County living square feet feature

6

The type of property could be one to four BHK apartments, and 1 RK stu-
dio apartments. BHK means bedrooms, halls (living rooms), and kitchen. A 1
RK studio apartment is an apartment with one distinct bedroom and kitchen
[Sai22]. For this feature, we decided to delete the ‘BHK Apartment’ or the ‘RK
Studio Apartment’ part of each string. So, we considered 1 RK to be equivalent
to 1 BHK. We converted this feature into the number of BHK.

Total Price:

Figure 6: King County living square feet feature

The label needed to be transformed. For the label, ‘L’ means lakhs, and ‘C’
means crores. These units were used as this dataset used the Indian place value
system. The conversion is: 1 lakh = 1,00,000 (the equivalent of 100,000), and 1
crore = 1,00,00,000 (the equivalent of 10,000,000). So, we converted each of the
values for the label into a number by multiplying it with the appropriate value.

Rupee per area:

Figure 7: King County living square feet feature

Similar to the label, we had to transform this feature into numbers.

Type:

For this feature we performed a process one-hot encoding. One-hot encoding
is a process of transforming categorical variables (variables that are not num-

7

Figure 8: King County living square feet feature

bers) into numerical variables (variables that are numbers).

Open date:

Figure 9: King County living square feet feature

This feature contained too many random values. So, we chose to change
this feature to describe the age of each property. For example, if the open date
was ‘Possession by . . .”, then we replaced it with 0, as the house was 0 years old.

3 Preparing the Datasets

3.1 The King County Dataset

After examining the King County dataset in detail, we made changes to the
dataset for the model to work well with the dataset. We implemented the
transformations that we described in the previous section. Note that we had to
remove examples last, as if we removed the examples first, then the code would
have returned an error when we tried to access a deleted element’s index.

Figure 12: Removing examples that had no bedrooms or bathrooms

These were all the modifications that we described previously. However, we

8

Figure 10: Deleting unwanted features and printing the remaining variables

Figure 11: Replacing basements less than 300 square feet with 0

trained a few models with the year renovated feature, and a few models with-
out the year renovated feature. In the case that we kept the year renovated
feature, we needed to make the set balanced. We did this by collecting the
houses that had been renovated and added them a number of times until the
set became balanced. Before we did this, however, we split the dataframe into
the label and the features. We assigned the label to the values in the ‘price’ col-
umn, and the feature to the values of the columns other than the ‘price’ column.

When we removed the year renovated feature, we did this using the same
method [Yan] that we used when initially deleting features. Now, we were ready
to split the data into the training and validation sets. We did this by using the
train test split method from the sklearn.model selection library. We chose to do
this to prevent overfitting. Overfitting is a scenario in which the model becomes
too adapted to the training set and cannot predict new examples well. So, we
split the dataset in order to train the model with some examples and use the
other examples to test how well the model does on examples it has not seen
before. We train the model with the training set, and we test the model using
the validation set. Then, we choose the model that produces the lowest error
on the validation set.

Figure 13: We split the dataset into the training and validation sets

We have also scaled the data. Scaling the data means that we reduce their
size dramatically, allowing the model to work better with the data. The way in
which we scaled is [Skl]:

9

(x1, x2, x3, . . . , xn) = (
x1 − µ

σ
,
x2 − µ

σ
,
x3 − µ

σ
, . . . ,

xn − µ

σ
) (2)

(with the same method of scaling the labels). As we have imported the prepro-
cessing library, we scaled the data by using the methods included in this library.

Figure 14: Scaling the King County labels and features

3.2 The India Dataset

Certain transformations were performed as shown in Fig. 15, Fig. 16, Fig. 17,
and Fig. 18.

Figure 15: Deleting the unwanted features

The next modification that we did was format the label. We replaced the
string with a number in the corresponding unit (lakhs or crores).

Figure 16: Formatting the label by replacing each value with a number in the
corresponding unit

10

Figure 17: Modifying the Type of plot, Rupee per area, and the Open date
features

As mentioned before, we needed to perform one-hot encoding on the ‘Type’
feature. We did this using the .replace() method for the dataframe.

Figure 18: Performing one-hot encoding on the Type feature (we replaced Under
Construction with 0 and Ready to move with 1)

Figure 19: Printing the end values of some features

4 King County Models and Results

4.1 With the Year Renovated Feature

4.1.1 Linear Regression

Now that we have prepared the dataset, we started to train the models. First, we
trained the models with the dataset that includes the year renovated feature. We
began with linear regression. Linear regression is one of the simplest techniques
to model data, and works for numerical problems (problems in which the label
is numerical). The formula for linear regression is:
ŷ = w1x1 + w2x2 + · · ·+ wnxn + b, where ŷ is the predicted label.

11

In this formula, the w’s and the b are called parameters, and are chosen by the
computer.

4.1.2 Regularization

We have also used regularization for all the models in this paper. Regularization
is a technique to prevent overfitting. In regularization, we use a new variable
to limit the sizes of the parameters. This variable is λ (lambda). λ is a hy-
perparameter, a variable whose value we can choose. So, we trained multiple
models, each with different values of lambda. Then, we kept the model whose
validation error was lowest. The equation for the mean square error function
with regularization for linear regression is [Kha18]:

loss = 1
x

∑x
i=1(yi − ŷi)

2 + λ
l

∑l
i=1 w

2
i , where x is the number of examples,

and l is the number of parameters, excluding b.

We stored the training errors, validation errors, and the lambdas that we
used in three lists.

Figure 20: Creating three lists to store information

4.1.3 Neural Networks

Now, we started coding the models. We used the neural networks in tensorflow
to implement these models. Neural networks are made up of layers and nodes.
Neural networks have an input layer, and output layer, and most of the time,
hidden layers. There can only be one input and output layer. Each layer, l,
except the input layer, has an activation function, f [l. In this paper, we used
fully connected neural networks, also known as dense neural networks. In fully
connected neural networks, each node in one layer is connected by an edge to
each node in the next layer. Each edge and node has its own parameter that is
chosen by the computer. The parameter for the edge connecting the ith node

in layer l -1 to the j th node in layer l in a neural network is w
[l]
ij . The param-

eter for the ith node in the lth layer of a neural network is b
[l]
i . Each node

has data associated with it. In the input layer (the first layer), the data asso-

ciated with the nodes are the features. The data for the ith node in layer l is a
[l]
i .

The formula used to calculate the data for nodes not in the input layer is:

a
[l]
i = f [l](

∑n[l−1]

j=0 wji
[l]a

[l−1]
j + b

[l]
i)

12

Similar to linear regression, the equation for the mean square error function
with regularization for neural networks is:

loss = 1
x

∑x
i=1(yi − ŷi)

2 + λ
p

∑p
c=0(w

[l]
ij)

2, where p is the number of edges in the

neural network. Note that p = n[0] ×n[1] +n[1] ×n[2] + · · ·+n[L−1] ×n[L]. Note
that the input layer is layer 0.

Each neural network has its own architecture, which refers to the arrange-
ment of layers, activation functions for the layers, and the nodes in the neural
network. Linear regression is a special form or architecture of a neural net-
work. It only has one layer, and the activation function for the output layer
is the identity function. There are multiple different possibilities for activation
functions. Some are: the sigmoid function (σ(x) = 1

1+e−x) [Wei], the identity
function (id(x) = x), the hyperbolic tangent function, and the Rectified Linear
Unit [Sha17] (ReLU) activation function (ReLU(x) = x, if x ≥ 0, or 0, if x < 0).

4.1.4 Linear Regression Models

Now, we started coding linear regression. The graphs below plot the steps
(epochs) against the errors. The steps are represented on the x-axis, and the
errors are displayed on the y-axis.

General Note: All errors displayed and mentioned in this paper are subject to
variation, and are not guaranteed to stay the same when training models again.
We also used the stochastic gradient descent, and so the errors will vary.

Figure 21: Linear regression code

13

In the code above, first we defined lambda as zero. Then, we restarted the
model by essentially deleting the previous model, if any. When we assigned the
model to Sequential(), a new model with an input layer was created. Then, we
added the output layer, a layer with 1 node, no activation function (this uses
the identity activation function), and used regularization. The next line told
the model to minimize the mean square error on the training set. We fitted
the training features and labels to the model. Then, we told the model to keep
track of the loss (error), and then plot the errors. We viewed the exact errors
by appending the errors to the arrays that we initialized before.

Figure 22: Displaying errors for linear regression

Now, we increased lambda slightly, and ran linear regression on the dataset
again. Then, we printed the errors.

Figure 23: Linear regression code

We ran this process with different lambdas. We chose lambdas depending
on the increase or decrease in validation errors. Note that at times, the lists
might have different values, as we ran the models at different times. Sometimes,

14

Figure 24: Displaying errors for linear regression

we ran the same model multiple times to ensure that it has found the global
minimum for the error. Refer to Table 1 for more errors for linear regression.

Lambda
Number
of Epochs

Train Error Validation Error

0.0005 250 0.3426942229270935 0.3466163
0.0006 250 0.3416242003440857 0.34618902
0.0007 250 0.3430746793746948 0.3467944

Table 1: Training and validation errors for linear regression with different
lambdas

The lowest validation error occurred when lambda was equal to 0.0006. This
resulted in a training error of 0.3416242003440857 and a validation error of
0.34618902. Although the lowest validation error was produced when lambda
was 0, we wanted to use regularization, and setting lambda to 0 did not use
regularization. So, we ignored that model. Although we knew the errors, we
could not discern what they mean. Hence, we calculated some more information
for a randomly chosen subset of 100 examples from the validation set. Note that
the information could be different as the timing of training these models and
determining the information is different.

4.1.5 Evaluating the model

We determined three pieces of information: the unscaled label that the model
predicts, the actual label, and the percentage error between the predicted label
and the actual label. We calculated the information by making the model
predict the scaled label using the scaled features for the validation set. Then,
we unscaled the predicted labels. We went through the unscaled predicted
labels, and made sure that they were all positive. If they were negative, we
multiplied the predicted labels with -1. The information displayed below is for
ten examples from the subset. Note that the following information was obtained
by using the model that produced the least validation error, without taking into
consideration if it had been trained again after producing the least validation
error.

The leftmost column contains the unscaled predicted labels, the middle col-
umn displays the actual labels, and the rightmost column contains the per-

15

Figure 25: Predicted vs actual price, and percentage error

centage errors between the predicted and actual labels. The formula used to
calculate the percentage error is:

percent error (%) = y−ŷ
y × 100%

The mean error for the subset was -10.851832%. This meant that for this
subset, the model generally predicted the label to be about 11% higher than
the actual label.

Now, we trained one more model. We have trained many other models for
these datasets, however, for the sake of the length of this paper, we have mainly
talked about linear regression.

4.1.6 ReLU (6), ReLU (4), ReLU (5) models

The next model architecture that we used was ReLU (6), ReLU (4), ReLU (5).
Note that the numbers in the brackets are the number of nodes in that layer.
Refer to Table 2 for the errors that occurred when training models for this ar-
chitecture.

Lambda
Number
of Epochs

Train Error Validation Error

0 300 0.18896162509918213 0.20669673
0.0005 300 0.20660923421382904 0.21101856
0.001 300 0.21743005514144897 0.22290714

Table 2: Training and validation errors for different lambdas for the archi-
tecture: ReLU (6), ReLU (4), ReLU (5)

The lowest validation error, with regularization, for this architecture is
0.21101856, when lambda is 0.0005.

16

4.1.7 Other models

As we mentioned before, we have trained many more models. Refer to Table 3
and Table 4 for the errors for some of these models.

Lambda
Number
of Epochs

Train Error Validation Error

0 100 0.2631775140762329 0.2822884
0.0005 200 0.3189285397529602 0.32071579
0.001 150 0.2674862742424011 0.28359616
0.0015 200 0.32559671998023987 0.32045856

Table 3: Training and validation errors for different lambdas for the archi-
tecture: ReLU (2)

Lambda
Number
of Epochs

Train Error Validation Error

0 500 0.24578668177127838 0.26487643
0.001 400 0.26277828216552734 0.25601012
0.0012 400 0.26819127798080444 0.26044652

Table 4: Training and validation errors for different lambdas for the archi-
tecture: ReLU (2), Tanh (2)

4.2 Without the Year Renovated Feature

4.2.1 Linear regression

Prior to training the following models, we deleted the year renovated feature.
Now, we followed a similar process to train the models.

Figure 26: Linear regression code

17

Figure 27: Displaying linear regression errors

Refer to Table 5 for more errors for linear regression.

Lambda
Number
of Epochs

Train Error Validation Error

0.001 200 0.3879319131374359 0.37372103
0.0012 200 0.3875928521156311 0.37174022
0.0015 200 0.38780951499938965 0.3721308

Table 5: Training and validation errors for linear regression with different
lambdas

4.2.2 Evaluating the model

The least validation error for linear regression without the year renovated feature
was 0.37174022, when lambda was 0.0012. Again, we calculated information for
a different subset of 100 examples in the validation set by following the same
process that we described previously. The information displayed below is for ten
examples from the subset. Note that the following information was obtained by
using the model that produced the least validation error, without taking into
consideration if it had been trained again after producing the least validation
error.

Figure 28: Predicted vs actual price, and percentage error

18

The leftmost column contains the unscaled predicted labels, the middle col-
umn displays the actual labels, and the rightmost column contains the percent-
age errors between the predicted and actual labels. The mean error for the
subset was -4.152803%. This meant that for this subset, the model generally
predicted the label to be 4% higher than the actual label.

4.2.3 ReLU (6), ReLU (4), ReLU (5) models

Now, we trained models for the next architecture: ReLU (6), ReLU (4), ReLU
(5). Refer to Table 6 for the errors for this architecture.

Lambda
Number
of Epochs

Train Error Validation Error

0 400 0.29903194308280945 0.31010622
0.001 400 0.3164912462234497 0.30268273
0.0013 400 0.31477266550064087 0.29665732
0.0016 400 0.3172665536403656 0.29994994

Table 6: Training and validation error when lambda is 0.0015
The lowest validation error is 0.29665732, when lambda is 0.0013.

4.2.4 Other models

We have also trained other models for this dataset (without the year renovated
column). Refer to Table 7 and Table 8 for the errors for some of these models.

Lambda
Number
of Epochs

Train Error Validation Error

0 200 0.32799747586250305 0.31698662
0.001 400 0.33125102519989014 0.31242096
0.0014 400 0.397177517414093 0.3719641

Table 7: Training and Validation errors for ReLU (2) with different lambdas

Lambda
Number
of Epochs

Train Error Validation Error

0 300 0.3295673727989197 0.31414253
0.0005 300 0.3347756564617157 0.31153727
0.001 300 0.3443007469177246 0.31559515

Table 8: Training and Validation errors for ReLU (2), Tanh (2) with different
lambdas

19

5 India Models

5.1 Linear regression

We have finished training the models for the King County dataset. Now we
trained models for the India dataset. First, we trained linear regression models.

Figure 29: Linear regression code

Figure 30: Displaying errors for linear regression

Refer to Table 9 for more errors for linear regression.

Lambda
Number
of Epochs

Train Error Validation Error

0.0005 50 0.0590645968914032 0.05804044
0.001 50 0.05953659117221832 0.057800516
0.0015 50 0.06008978188037872 0.05795654

Table 9: Training and validation errors for linear regression with different
lambdas

20

5.2 Evaluating the model

The lowest validation error for linear regression for this dataset is 0.057800516,
when lambda is 0.001. For that model, we again calculated the following infor-
mation, using the same process that we used before. The information displayed
below is for ten examples from the subset. Note that the following information
was obtained by using the model that produced the least validation error, with-
out taking into consideration if it had been trained again after producing the
least validation error.

Figure 31: Predicted vs actual price, and percentage error

The leftmost column contains the model’s predictions, the middle column
contains the actual prices, and the rightmost column displays the percentage
errors between the model’s predictions and the actual prices. The mean error for
this subset is 3.7801437%. This meant that for this subset, the model generally
predicted the label to be 4% lower than the actual label.

5.3 ReLU (6), ReLU (4), ReLU (5) models

Now, we trained models for the architecture: ReLU (6), ReLU (4), ReLU (5).
Refer to Table 10 for the errors for these models.

Lambda
Number
of Epochs

Train Error Validation Error

0.0001 100 0.0012585741933435202 0.00016387845
0.0003 100 0.0030744753312319517 0.0008748942
0.001 100 0.007523918990045786 0.0006793593

Table 10: Training and validation errors for ReLU (6), ReLU (4), ReLU (5)
with different lambdas.

The lowest validation error for this architecture is 0.00016387845, with a
lambda of 0.0001.

21

5.4 Other models

We have also trained other models for this dataset. Refer to Table 11 and Table
12 for the errors for some of these models.

Lambda
Number
of Epochs

Train Error Validation Error

0 50 0.020178716629743576 0.019952854
0.0005 50 0.027878375723958015 0.023663329
0.001 50 0.0317220576107502 0.02660647

Table 11: Training and Validation errors for ReLU (2) with different lamb-
das.

Lambda
Number
of Epochs

Train Error Validation Error

0.0001 100 0.018649589270353317 0.016446289
0.001 100 0.025118308141827583 0.014619921
0.0012 100 0.015121044591069221 0.0028623657
0.0014 100 0.016498055309057236 0.0020094276
0.0017 100 0.03245490789413452 0.012285076

Table 12: Training and Validation errors for ReLU (2), Tanh (2) with dif-
ferent lambdas.

6 Observations and Analysis

6.1 King County Model Errors Observations and Analysis

Now that we have trained models for the King County housing dataset, we have
been able to draw the following observations and inferences.

1. The lowest validation error for the dataset with the year renovated feature
was 0.21101856. This was obtained using the architecture: ReLU (6), ReLU (4),
ReLU (5). The lowest validation error for the dataset without the year reno-
vated feature was 0.29162762. This was produced using ReLU (4), Tanh (2),
ReLU (3) architecture. As both of these models are relatively complex, more
complex models are able to best model the data.

2. We considered models that only used ReLU and models that also used
other activation functions, for the dataset with the year renovated feature, and
observed that models using only ReLU had varying errors, but had the lowest
error. We also considered the models with only ReLU and models that also had
other activation functions for the dataset without the year renovated feature,
and found that models with only ReLU usually performed the same as the other
models. These observations suggest that the King County dataset without the
year renovated feature is modeled roughly equally well with any combination of
activation functions, and the dataset with the year renovated feature is better
modeled by the ReLU activation function. This could be because the ReLU

22

activation function is a powerful activation function that is able to model the
data relatively well.

3. Models that were more complex than linear regression produced the low-
est validation errors. In fact, the lowest validation error for linear regression
was higher than the lowest validation errors for the other models. This could
be because the dataset was not very linear, and the more complex models were
able to better fit and adapt to the data.

4. The lowest validation error for the dataset with the year renovated feature
was about 38.2% lower than the lowest validation error for the dataset without
the year renovated feature. From this, we can infer that the year renovated
feature does influence the price. So, the pricing trends in King County, and
perhaps even the property buyers, consider the year renovated feature (as con-
sidering the year renovated feature allowed the model to better estimate the
price of the property).

5. The best models for the King County dataset, with and without the year
renovated feature, produced somewhat high percentage errors. The percentage
errors were generally lower for the dataset with the year renovated feature than
for the dataset without the year renovated feature. The average percentage
error for the best model without the year renovated feature (around -16.25%)
was much greater than the average percentage error for the best model with the
year renovated feature (around -4.12%). This also shows that the year renovated
feature is an important factor to consider when finding the price of a property.

6. For the subset (100 examples), the dataset with the year renovated fea-
ture had an average percentage error of around -5.77%. For a different subset
(100 examples) in the dataset without the year renovated feature, the average
percentage error of around -12.34%. However, we cannot generalize using this
information since the subset does not represent the characteristics of the whole
data. The subset was mainly used to compare the predicted prices to the actual
prices to understand the model errors.

7. The features did not seem to be able to describe the pricing of the prop-
erties well. This is due to the relatively large error on both the training and
validation sets for all of the models developed for this dataset. This suggests
that either more features are required, or that the features do not accurately
represent the concerns of the buyers, or that house prices are spread apart ran-
domly.

8. The relatively large errors could also mean that the methods we used to
prepare the datasets could be wrong. After all, the quality of the data influences
the accuracy of the model.

9. Some ways in which we could improve the results of the models are: in-
cluding the date feature, removing outliers, changing the year renovated value
from 0 to the year built value for houses that have not been renovated, and
using the square feet living 15 and square feet lot 15 features in the model.

23

6.2 India Model Errors Observation and Analysis

Now that we have trained the models for the India housing dataset, we have
drawn the following observations and inferences:

1. The best model for this dataset was ReLU (6), ReLU (4), ReLU (5), with
a lambda of 0.0001. ReLU (6), ReLU (4), ReLU (5) was able to model the data
extremely well, while the other models were not able to do this as well. There-
fore, the property prices in India follow a slightly complex trend, yet relatively
linear trend (as linear regression has also done relatively well for this dataset).

2. As all of the models have worked quite well, the features have described
the property prices very well. This means that the features have almost mir-
rored the values of property buyers in India.

3. It can be inferred that the method in which we prepared the dataset was
successful in: changing all the values in the dataset into numbers, and doing so
in a way that was consistent with the trends in the housing market in India.

4. Models that used only ReLU had varying errors, but also had the low-
est errors. Models that also used other activation functions also had low and
varying errors. However, the models with more layers (more complex models)
generally had lower errors. This suggests that the more complex models were
again able to identify and adapt to patterns within the dataset. There were also
many examples in this dataset, and so more complex models were needed to fit
the data better.

5. Linear regression produced the highest errors of all the models for this
dataset. This suggests that although the data followed a relatively strong lin-
ear pattern, more layers and complexity was needed to properly and accurately
model the data.

6. The average percentage error for the best model for the India dataset was
around 0.51%. This means that the model is extremely accurate, predicting
many property prices to the nearest lakh or thousand rupees. Since the aver-
age percentage error is positive, the predicted price was usually lower than the
actual price.

7. The average percentage error for the best model for a subset of the India
dataset was about 0.49%. Most of the percentage errors for the subset were
between -1% and 2.5%. This suggests that the model could predict the prices of
the apartments quite accurately. For the majority of the houses, the predicted
price was lower than the actual price of the property.

8. The model could have been improved by using the city feature, or the
project name feature, or even extracting key details from the description fea-
ture. We could have replaced the city feature with weightages to represent the
strengths of the housing markets in the cities. We could have developed a rank-
ing system for the project name. We could have used a loop to iterate through
the descriptions, and find the details that we would want. Then, the code could
return key words, and determine a number for these key words. Although do-
ing these steps could have increased the error, this would help to include more
important details into the model.

24

6.3 Comparing the Datasets’ Models’ Results

There are patterns that we can now observe within the results of the two
datasets. These patterns are:

1. The India dataset’s lowest mean percentage error was around 0.51%,
whereas the lowest mean percentage errors for the King County dataset with
and without the year renovated feature were -4.12% and -16.25% respectively.
So, the best India model has done much better than the best King County mod-
els.

2. Complex models were better able to model the data for both datasets.
This could be due to the complexities of the trends in these regions.

3. All of the models for the India dataset produced a lower error than the
models developed for the King County dataset. This could mean that the In-
dian housing market follows a much stronger pattern. We can infer that there
is a smaller percentage of outliers in the India dataset. However, it could also
mean that the features included in the India dataset describe the Indian hous-
ing market better than the features included in the King County dataset. Of
course, it is always possible that we were able to format the data in the India
dataset better than we were able to do for the King County dataset.

4. The India dataset is more recent than the King County dataset, and this
could have influenced the errors of the models. This could mean that more
recent datasets tend to follow a more consistent pattern for modeling.

7 Conclusion and Further Analysis

The patterns identified in the previous parts of this paper are significant, because
they can tell us about the housing markets of different regions of the world. They
can also tell us about the values of people in specific areas, and what we should
and should not look for when buying properties in those areas. The patterns
allow us to realize the kinds of datasets, and the features that would be most
important to develop the best model(s) in these regions.

From the observations we have made, we can conclude that for each region,
a model specific for that region should be developed. This model should have
enough complexity to model the region appropriately.

However, we have to also discuss the flaws that are included with this re-
search method. Firstly, the geographies are quite different, and although we
talked about the values of the people, they were not represented in the datasets
themselves. Secondly, the comparisons cannot be generalized, and are subject
to imperfections, due to the nature of the housing market. The housing market
depends heavily on the values of the people, and on the history of the proper-
ties. In this paper, we have not considered the time difference between the two
datasets. Thirdly, the two datasets describe different types of properties. One
describes houses, while the other describes apartments. But this is also due to
the preference of type of properties in various geographical areas. Lastly, we

25

have not considered or removed outliers. Removing outliers would have helped
the models to perform better, as they would not have to adjust and increase the
error in order to incorporate the outliers.

We would like to talk about future work in conclusion. One of the next steps
is to consider the geographies of the properties. This is because the geography of
the properties can significantly affect the prices of the properties. For example,
in India, there is a much higher population to size ratio than in King County,
so the prices are bound to be quite different. So, if we were to somehow test
the models with the other datasets, we would get extremely high errors. An
alternative next step is to replace the ”year renovated” value with the ”year
built” value for houses that have not been renovated. This could help to reduce
the gap between the year built and year renovated features for houses that have
not been renovated, which would help to reduce the errors of the model. We
believe that if enough examples are gathered, a solution to better solve this
problem is deep learning. Deep learning is an even more powerful method to
model and make predictions from data. However, we would need a much larger
training set.

References

[BD17] Roger Brooks and Karina Dahlke. Understanding the 3 Categories
of Machine Learning – AI vs. Machine Learning vs. Data Mining
101 (part 2). Oct. 2017. url: https://www.guavus.com/ai-vs-
machine - learing - vs - data - mining - whats - big - difference -

part-2/.

[Cha18] Shiva Chandel. kc house data. Kaggle, 2018.

[Red] Redfin. King County Housing Market. url: https://www.redfin.
com/county/118/WA/King-County/housing-market#trends.

[Aff18] Regional Affordable Housing Task Force. Final Report and Recom-
mendations for King County, WA. Research report. Regional Afford-
able Housing Task Force, 2018.

[Spa20] Center for Spatial Data Science. 2014-15 Home Sales in King County,
WA. Aug. 2020. url: https://geodacenter.github.io/data-and-
lab/KingCounty-HouseSales2015/.

[Tri22] Devesh Tripathi. Houses in Top Cities. Kaggle, 2022.

[Ser22] Express News Service. At Rs 6000 per sqft, Hyderabad property rates
second highest in India. Apr. 2022. url: https://www.newindianexpress.
com/states/telangana/2022/apr/14/at-rs-6000-per-sqft-

hyderabad-property-rates-second-highest-in-india-2441818.

html.

[Sai22] Nupur Saini. What is BHK? – An Essential Guide With BHK Full
Form Meaning. Dec. 2022. url: https://www.magicbricks.com/
blog/what-is-bhk-full-form/126037.html.

26

https://www.guavus.com/ai-vs-machine-learing-vs-data-mining-whats-big-difference-part-2/
https://www.guavus.com/ai-vs-machine-learing-vs-data-mining-whats-big-difference-part-2/
https://www.guavus.com/ai-vs-machine-learing-vs-data-mining-whats-big-difference-part-2/
https://www.redfin.com/county/118/WA/King-County/housing-market#trends
https://www.redfin.com/county/118/WA/King-County/housing-market#trends
https://geodacenter.github.io/data-and-lab/KingCounty-HouseSales2015/
https://geodacenter.github.io/data-and-lab/KingCounty-HouseSales2015/
https://www.newindianexpress.com/states/telangana/2022/apr/14/at-rs-6000-per-sqft-hyderabad-property-rates-second-highest-in-india-2441818.html
https://www.newindianexpress.com/states/telangana/2022/apr/14/at-rs-6000-per-sqft-hyderabad-property-rates-second-highest-in-india-2441818.html
https://www.newindianexpress.com/states/telangana/2022/apr/14/at-rs-6000-per-sqft-hyderabad-property-rates-second-highest-in-india-2441818.html
https://www.newindianexpress.com/states/telangana/2022/apr/14/at-rs-6000-per-sqft-hyderabad-property-rates-second-highest-in-india-2441818.html
https://www.magicbricks.com/blog/what-is-bhk-full-form/126037.html
https://www.magicbricks.com/blog/what-is-bhk-full-form/126037.html

[Yan] Neko Yan. How to delete a column in pandas. url: https://www.
educative.io/answers/how-to-delete-a-column-in-pandas.

[Skl] Sklearn. sklearn.preprocessing.StandardScaler. url: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html.

[Kha18] Renu Khandelwal. L1 and L2 Regularization. Nov. 2018. url: https:
/ / medium . datadriveninvestor . com / l1 - l2 - regularization -

7f1b4fe948f2.

[Wei] Eric Weisstein. Sigmoid Function. url: https://mathworld.wolfram.
com/SigmoidFunction.html.

[Sha17] Sagar Sharma. Activation Functions in Neural Networks. Sept. 2017.
url: https://towardsdatascience.com/activation-functions-
neural-networks-1cbd9f8d91d6.

27

https://www.educative.io/answers/how-to-delete-a-column-in-pandas
https://www.educative.io/answers/how-to-delete-a-column-in-pandas
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://medium.datadriveninvestor.com/l1-l2-regularization-7f1b4fe948f2
https://medium.datadriveninvestor.com/l1-l2-regularization-7f1b4fe948f2
https://medium.datadriveninvestor.com/l1-l2-regularization-7f1b4fe948f2
https://mathworld.wolfram.com/SigmoidFunction.html
https://mathworld.wolfram.com/SigmoidFunction.html
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

	Introduction
	A Brief Introduction to Machine Learning
	Notation
	Thesis Statement

	Analyzing the Datasets
	King County Dataset kchouses
	The India Dataset indiahouses

	Preparing the Datasets
	The King County Dataset
	The India Dataset

	King County Models and Results
	With the Year Renovated Feature
	Linear Regression
	Regularization
	Neural Networks
	Linear Regression Models
	Evaluating the model
	ReLU (6), ReLU (4), ReLU (5) models
	Other models

	Without the Year Renovated Feature
	Linear regression
	Evaluating the model
	ReLU (6), ReLU (4), ReLU (5) models
	Other models

	India Models
	Linear regression
	Evaluating the model
	ReLU (6), ReLU (4), ReLU (5) models
	Other models

	Observations and Analysis
	King County Model Errors Observations and Analysis
	India Model Errors Observation and Analysis
	Comparing the Datasets’ Models’ Results

	Conclusion and Further Analysis

