
Top-N Movie Recommendations using Machine

Learning

Navya Terapalli ∗

March 22, 2023

Abstract

In this paper we explore recommendation algorithms using machine
learning. Specifically, our goal is to predict top-N movie recommenda-
tions using different models to give us predicted ratings for a movie. As
recommendation research has shown there are several metrics to measure
when evaluating top-N recommendations such as accuracy (RMSE/MAE),
hit rate, coverage, and diversity. In this research, we are focusing on rat-
ing ranking and movie genre coverage. We utilize collaborative filtering,
content filtering, hybrid recommenders, and finally include neural nets to
generate predictions.

1 Introduction

A strong paper that explores balanced recommendations is titled Calibrated
Recommendations published by Netflix [Ste18]. It highlights various calibra-
tion metrics, approaches, diversity, and fairness to fight the problem of echo
chambers and filter bubbles. However, we tackle the issue of balanced recom-
mendations with a much simpler approach and focus on just two metrics, namely
rating values and genre coverage, and evaluate them in a simple manner. We
focus on RMSE, the feasibility of using the predicted ratings to rank top-N
recommendations, and balancing the percentages of genres for a given model.

We use the MovieLens dataset which contains explicit movie ratings across a
number of movies and users. We also query the TMDB API to fetch additional
data per movie so that we have a more complete dataset so that we can utilize
different approaches.

We have a total of five different models. The first is collaborative filtering
based on matrix factorization. The second is content based filtering. The third
is a hybrid approach where we combine the first and second. The fourth is
collaborative filtering based on matrix factorization using Keras. And the fifth
is a neural net enhanced version of the fourth model. Use evaluate and measure
our predictions and models with RMSE, cosine similarity, loss/epoch, genre

∗Advised by: Amandalynne G Paullada

1



percentage where appropriate. The hypothesis is that hybrid recommendation
systems form the most balanced models.

2 Models

In this section we explore our models.

2.1 Collaborative Filtering: Apache PySpark

Using the Apache PySpark library we calculate movie recommendations based
on collaborative filtering. We created a subset of the MovieLens 25M dataset
to easily work with the data and process it. I chose to use all the 58,000 movies
but restricted the model to approximately 1 million ratings given by over 10,000
users. The two main files for my model are ratings-modified.csv and movies.csv.
Highlighted below in green are the columns we used for the recommendation
algorithm.

Figure 1: 1 row out of 1M rows in ratings-modified.csv

Figure 2: 1 row out of 58K rows in movies.csv

Figure 3: The user–item matrix will be sparse

Each user can give a rating from 1-5 for a given title. The csv files are used
to create a user-item interaction matrix like above.

2



This model’s code in this section is based on [M H17] and [Aut]. We utilize
the concept of matrix factorization on our ratings matrix. This will decompose
the user-item interaction matrix into 2 separate matrices. One is the user matrix
and the other is the item matrix. The matrix factorization algorithm we use is
ALS, alternating least squares. The most important hyperparameters used are
maxIter, rank, and regParam. I’ve set the maxIter to 10, regParam to 0.01, and
rank as the default 1. maxIter iterates the model 10 times during training, the
regParam represents the L2 regularization, and the rank represents the latent
factors. To test the accuracy of the model we do a 80/20 train-test-split and use
a regression evaluator to predict the accuracy of our model. The RMSE (root
mean squared error) ranges between 0.84547-0.84921. Which is relatively high
given that the ratings range from 1-5. After the model was trained, we combined
the data using data structures to easily manipulate the data and present the
final recommendation set.

Figure 4: 10 RMSE data points

One observation of using this ALS model to recommend movies is that the
actual movie recommendations are slightly different each time the algorithm is
run. Yet, we do find an overlap of recommendations. When the model was run
10 times for a user with userId 99. The following two top-10 recommendations
compare the fifth and six trials.

3



Figure 5: Two Top-10 recommendations for userId 99 trained on the same model
using the same dataset. The left table predicts recommendations when the model
has an RMSE of 0.84867. The right table predicts recommendations when the
model has an RMSE of 0.84658. Note that the overlapping movies are high-
lighted.

We used collaborative filtering to predict the ratings and compare them
with the actual score that the user had given the film. Upon inspecting the
variance in recommendations due to variance in RMSE. We trained the model
ten separate times, each outputting a top-10 for a given user with userId 99, to
aggregate a total of 100. Next we used that data to create a histogram to easily
visualize how 55 unique movies were recommended- some more frequently than
others.

4



Figure 6: 55 unique recommendations

The above recommendations span a wide variety of genres such as Drama,
Thriller, Crime etc. This model might be suitable for accurately ranking movies
by predicted scores and there is an element of randomness that increases the
coverage and novelty which shows the users new movies in each set of top-10
recommendations. Let us take a look at how the percentage of genres are shown
on a pie chart which evaluates genre coverage. We will aim to improve this
distribution in future models as we will see.

5



Figure 7: Each of the 55 recommendations can have 1 or more genres. Pie chart
shows the distribution. We see Drama accounts for 23 percent or nearly 1 out
of 4

2.2 Content-Based Recommendation: Scikit-learn

One of the most popular recommendation techniques is content-based filtering.
It focuses on item-item similarity based on its properties. We used the sklearn
library on the MovieLens dataset and generated our own modified dataset by
querying 56,000 movie summaries from TMDB’s REST API. After cleaning and
processing the data, we had a custom generated csv file. The code used for this
content-recommendation model is based on [sen22] and [Gar20].

Figure 8: 1 row out of 56K rows in custom data

During the exploratory data analysis we saw that the manually selected
‘overview’ feature had to be cleaned before being used for the model. The
sklean library provides TfidfVectorizer as part of its library which can be used
to create a tfidf matrix that can be configured to drop English stop words. This
tfidf matrix in turn is used to create a cosine similarity matrix with the help of

6



a linear kernel. The cosine similarity is calculated as follows where each vector
(A,B) is the tfidf matrix.

If the input to our system is the movie ‘Dead Poets Society (1989)’ we can
use our cosine similarity matrix to get the top 10 similar movies. Note that
although the movies are in a foreign language, the overview is in English.

Figure 9: The top 10 similar movies to Dead Poets Society as ranked in de-
scending order by their cosine similarity

This model is suitable as a general recommender system given a title but
due to the static nature of the movie overview the same recommendations will
be returned for a given input.

2.3 Creating a Simple Hybrid Recommender: Combining
Our Collaborative and Content Approaches

We can combine both of the approaches to create a simple hybrid recom-
mendation system. Our goal is to create more robust recommendations by first
selecting a user from our dataset and feeding the corresponding userId into our
collaborative recommendation system. This gives up a top-10 recommendation
with a predicted rating per movie. Using each of those movies, we can then cre-
ate a content based recommendation to get similar movies by using the movie
plot summary, otherwise labeled the overview. However, our content based rec-
ommendations simply give us movie recommendations without a predicted score.
So we then take those content based recommendations and feed them back once
more into our collaborative system to give us a large set of recommendations
each with a given predicted rating. Below is a high level architecture diagram
of our hybrid recommendation pipeline. The code used for the hybrid model

7



is a combination of models 2.1 and 2.2 plus our own data processing business
logic.

We took the 55 unique movies that I described in the Collaborative Systems
and fed it through the pipeline stages 1, 2, 3, 4, and 5 as described above in
the picture. The novel set of recommendations gave an output of movie ratings
of which I sampled 225 unique ratings and displayed them on the graph below.
We can assume that a baseline rating of “3” means the movie is average. By
looking at the line of best fit we can see that our hybrid recommendation set
has mostly average or above average movies. To be specific, 132 movies with
predicted ratings greater or equal to 3 and 93 movies with predicted ratings
below 3.

Figure 10: Hybrid Recommender system takes userId, past userId interactions
and outputs a novel set of recommendations

To balance between the metrics of coverage and a good rated movie we can
suggest movies from the above average movie subset of size 132. Given that a
movie from the output of our hybrid recommender has a 58 percent of being
rated a 3 or above, our system helps us solve the problem of balancing movies
that the user will enjoy and improving coverage of a wide variety of movies.

Accuracy with RMSE isn’t the only metric that matters. Other metrics
such as coverage are also solved with this. Let’s say a new movie is introduced
into our system. Because no one might initially see that movie we won’t have
user-item interactions. However, if the overview summary of that new movie is
similar to something that is highly rated for a given there is a chance this new
movie gets displayed as a novel item to someone. Let us now recreate another

8



Figure 11: Graph of 225 movie ratings. 58 percent of recommendations with a
rating of 3 or above from our hybrid recommendation model

pie chart with the 255 movie recommendations from the hybrid approach to see
the genre distribution. Although this pie chart has 255 data points, since we
are normalizing the data to compare percentages, we can safely say that our
hybrid approach provides a more distributed set of genres.

In addition, our simple hybrid approach helps to alleviate the cold start
problem. If a new movie is introduced it may be recommended to a user simply
because its overview is similar to an existing highly rated movie. This is another
reason why it may be okay to recommend movies that are rated below the line of
best fit once in a while. Based on the hit rate, the number of movies that a viewer
actually selects from the top-10, we can then decide if that recommendation was
useful or not. Below we see a more diverse genre representation as compared to
Figure 7. Reflecting on our hypothesis, we see that a simple hybrid recommender
produces higher genre coverage. Drama genre has reduced below 20 percent and
an increase in comedy.

9



2.4 Keras Collaborative Filtering

We can evolve our recommendation system even further by leveraging the
power of Keras. First let’s recreate the matrix factorization model we have
previously explored using Keras and create a top-n recommendation. The code
for this model and the model in section 2.5 comes from [Fen] with some mod-
ifications for updated library APIs, minor model architectural changes, and
additional code for our recommendations and results analysis. So we reuse the
ratings modified.csv we have created earlier to leverage the userId and movieId
columns as inputs to our Keras model. First we have to create two Keras In-
put tensors with a shape of 1 which is what will flow through our model. The
shape of 1 lets our model know that we have a one dimensional input with 1
input. This Input is where we supply each column of userId and movieId to
each of the tensors. These tensors are then fed into Keras Embedding layers.
We try to predict the rating of a user with the concept of the hidden factors
that we label as the latent dimension. We model the user-item matrix as the
following. We can visualize the input and output dimensions of the Embedding
layer. The number of unique users and movies is determined by the size of our
dataset. The number of hidden features is configurable and I set it as 20. The
number of unique users is the size of the input dimension for the Embedding
layer. The number of hidden features is the size of the output dimension for

10



the Embedding layer. Each Embedding layer is then transformed into a Flatten
layer which reduces each 2 dimensional matrix with dimensions of (unique users
X hidden features) and (hidden features X unique movies) to matrices of size (1
X (unique users X hidden features) and (1 X (hidden features X unique movies).

Figure 12: Both of these Embedding layers will be further processed before taking
a dot product to predict a user’s rating

11



Figure 13: The movie Embedding layer is flattened. Similarly the user Embed-
ding layer is also flattened

Once we have both the Flatten layers we feed it into a Dot product Keras
layer which completes our matrix factorization model. This allows us to predict
ratings for a given userId. Let’s reuse the same userId 99 to predict top-10 rated
movies and train the model for a total of 10 epochs. This time we will predict
the rating for userId 99 for every movie in the test set and then get the highest
rated top 10. Below we find the architecture of our matrix factorization model
and plot the loss over each epoch. Overall we achieve an RMSE of 0.8322399.
And the loss decreases sharply between the first and third epoch.

Figure 14: The loss of each epoch for our Keras model

Next we take the top-N recommendations, check the genre distribution, and
display the model. Once the Drama genre seems to be overrepresented. In
addition, the top-10 recommendations ratings are slightly higher than the 1-5
ratings, which isn’t a good output in terms of accuracy if we want to compare
the predictions with the actual ratings a user may give. However, this method

12



still works at least to rank the top recommendations.

Figure 15: The top-10 recommendations (left), genre distribution (top-right),
and Keras model architecture (bottom-right)

Furthermore, the prediction ratings are starkly more precise and close to
each other for a given list of movies. This helps to rank movies better that
may be more closely rated as opposed to our previous approach using Apache
PySpark. Looking at our pie chart we see that our genre distribution is once
again concentrated on the drama genre at 26 percent.

2.5 Keras Collaborative Neural Nets

Now let us introduce Keras Dense and Dropout Layers to the previous ar-
chitecture. My work here is inspired by the paper titled Neural Collaborative
Filtering by Xiangnan He et al., where they apply neural networks to collabo-
rative filtering. In their research they conclude that deeper layers offer better
recommendation performance [ea17]. My model here in 2.5 is a simple version
of that approach which improved rating predictions ranges over the model in
2.4 and is again based on the work from [Fen]. The first Dense layer has 16
neurons using the “ReLu” activation function. Followed by one Dropout layer,
and a final Dense layer with 1 neuron.

13



Figure 16: Python code snippet of building our collaborative neural network
recommendation

Once more we recreate our loss per epoch, top-10 recommendations, genre
distribution, and display our Keras model architecture. As we can see the loss
reduces much faster than the previous Keras model. The ratings are now bound
within the 1-5 rating scale, while still maintaining the precision and closeness of
the predicting ratings per movie. Unfortunately, we see that as far as balancing
the genres, this model does not present a balanced recommendation. The Drama
genre is overrepresented at a whopping 56 percent higher than what we’ve seen
thus far. While this model succeeds at rating predictions, it fails at the second
metric of coverage. It achieves an RMSE of 0.82106 and below we see our loss
per epoch.

14



Figure 17: The top-10 recommendations (left), genre distribution (top-right),
and Keras neural net model architecture (bottom-right)

Figure 18: Loss per epoch for Keras collaborative neural net model

3 Conclusion and Possible Future Steps

Overall we have enough data to compare our models and see which metrics
are useful. As our hypothesis predicted, a hybrid approach balances predic-
tion ratings and genre distribution than either collaborative or content based
approaches. Our purely collaborative Keras model was not useful for both pre-
diction rating and genre coverage. Whereas our collaborative neural network
Keras model was only useful for prediction rating and was not useful in terms
of an equitable genre coverage.

15



To further continue this research the next logical step would be to utilize
metadata that we can gather from the MovieLens and TMDB APIs. In a future
research paper, instead of matrix factorization, we could make use of a simple
implementation of factorization machines [Lan21].

16



References

[Aut] No Author. Als - pyspark 3.3.0 documentation. https:

//spark.apache.org/docs/latest/api/python/reference/api/

pyspark.ml.recommendation.ALS.html.

[ea17] Xiangnan He et al. Neural collaborative filtering. in proceedings of
the 26th international conference on world wide web (www ’17). inter-
national world wide web conferences steering committee, republic and
canton of geneva, che, 173–182., 2017. https://doi.org/10.1145/

3038912.3052569.

[Fen] C. Feng. Neural collaborative filtering - machine learning notebook.
https://calvinfeng.gitbook.io/machine-learning-notebook/

supervised-learning/recommender/neural_collaborative_

filtering.

[Gar20] S. Garodia. Content-based recommender systems in
python, 2020. https://medium.com/analytics-vidhya/

content-based-recommender-systems-in-python-2b330e01eb80.

[Lan21] Fei Lang. Movie recommendation system for educational purposes
based on field-aware factorization machine, 2021. https://doi.org/
10.1007/s11036-021-01775-9.

[M H17] M Hendra Herviawan. Movie recommendation
based on alternating least squares (als) with apache
spark, 2017. https://hendra-herviawan.github.io/

build-movie-recommendation-with-apache-spark.html.

[sen22] seniordatascientist. Content-based recommender system with
python, 2022. https://dev.to/seniordatascientist/

content-based-recommender-system-with-python-5g85.

[Ste18] Harald Steck. Calibrated recommendations. In Proceedings of the
12th ACM Conference on Recommender Systems (RecSys ’18). As-
sociation for Computing Machinery, New York, NY, USA, 154–162.,
2018. https://doi.org/10.1145/3240323.3240372.

[Ter22] Navya Terapalli. Movie recommendations, 2022. https://github.

com/NavyaTer/Movie-Recommendations.

17

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.recommendation.ALS.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.recommendation.ALS.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.recommendation.ALS.html
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recommender/neural_collaborative_filtering
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recommender/neural_collaborative_filtering
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recommender/neural_collaborative_filtering
https://medium.com/analytics-vidhya/content-based-recommender-systems-in-python-2b330e01eb80
https://medium.com/analytics-vidhya/content-based-recommender-systems-in-python-2b330e01eb80
https://doi.org/10.1007/s11036-021-01775-9
https://doi.org/10.1007/s11036-021-01775-9
https://hendra-herviawan.github.io/build-movie-recommendation-with-apache-spark.html
https://hendra-herviawan.github.io/build-movie-recommendation-with-apache-spark.html
https://dev.to/seniordatascientist/content-based-recommender-system-with-python-5g85
https://dev.to/seniordatascientist/content-based-recommender-system-with-python-5g85
https://doi.org/10.1145/3240323.3240372
https://github.com/NavyaTer/Movie-Recommendations
https://github.com/NavyaTer/Movie-Recommendations

	Introduction
	Models
	Collaborative Filtering: Apache PySpark
	Content-Based Recommendation: Scikit-learn
	Creating a Simple Hybrid Recommender: Combining Our Collaborative and Content Approaches 
	Keras Collaborative Filtering
	Keras Collaborative Neural Nets

	Conclusion and Possible Future Steps

