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Chromophoric dissolved organic matter (CDOM) is a combination of plant and animal decomposition byproducts and the optically 

active component of dissolved organic matter (DOM) in water. CDOM measurements have been a focus in the literature related to 

aqueous environments since the 1980s. Current CDOM analysis is conducted using spectrophotometers that are large, bulky, and 

expensive (most upwards of $50,000 USD). In this study, the accuracy of a more compact, less expensive (~ $5,500 USD) field 

spectrometer (StellarNet) was tested against a traditional spectrophotometer (Photon Technologies International (PTI)). Thirty-six 

samples were collected from the Neponset River Salt Marsh in Boston, Massachusetts and analyzed on both instruments with the 

same set of standards for comparison. The correlation between measurements taken by the two instruments was strongly linear (R2 

= 0.9278) and the two sets of data (StellarNet and PTI) were not statistically different (p-value > 0.05), indicating that the less 

expensive, smaller StellarNet spectrometer is reliable in addition to field appropriate. The StellarNet spectrometer requires 

additional analysis (compared to the PTI) to convert the output of the instrument (photons) to a concentration (QSU). Highly 

concentrated sample concentrations (3-fold dilutions required) were not as well-correlated between instruments (R2 = 0.5027). 

However, this dilution error can be attributed to the length of time (1 year) between sample analysis (i.e., freezing/thawing effects) 

and/or sampling errors between analysts on the different instruments. 
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Chromophoric dissolved organic matter (CDOM), a 

combination of animal and plant decomposition byproducts, is 

produced from both marine and terrestrial sources (Coble et al., 

2004). It is a measurement of the optically active component of 

dissolved organic matter (DOM) in water and the most 

abundant fraction of DOM in natural waters bodies, 

particularly in forested watersheds with wetlands (Thurman, 

1983; Davies-Colley and Vant, 1987). When present in high 

concentrations, CDOM conveys a yellow or brownish color in 

solution (Coble et al., 2004). In coastal areas, most CDOM 

enters from rivers containing organic materials commonly 

leached from soils (Coble et al., 2004). Besides rivers, CDOM 

is additionally produced in the ocean via the release of organic 

molecules from organisms during processes such as bacterial 

and viral lysis (cell breakage), grazing, and excretion (Coble et 

al., 1998; Nelson et al., 1998; Steinberg et al., 2000).  

Since the 1980s, CDOM measurements have been a focus 

in the literature. CDOM interferences must be accounted for 

before the measurements of chlorophyll, suspended sediment 

and phytoplankton could accurately be made from reflectance 

remote sensing data (Tassan, 1988; Ferrari and Tassan, 1992; 

Karabashev et al., 1993). CDOM reflectance occurs in the 

ultraviolet (UV)-blue section of the electromagnetic spectrum 

but has no exclusive identifying spectral absorbance or 

reflectance features (Slonecker et al., 2016). CDOM displays a 

gradually decreasing slope from the ultraviolet through the blue 

regions and is commonly derived using absorbance or 

fluorescence techniques (Slonecker et al., 2016).  

CDOM has a significant impact on aquatic ecosystems. 

CDOM can affect water quality through the mobilization of 

metals and hydrophobic chemicals, which serves as a dominant 

source of reactive photochemical intermediates controlling the 

photolysis of natural DOM and trace organic contaminants 

(i.e., pharmaceuticals and personal care products; Olmanson et 

al., 2016). CDOM has been observed to act as a sunscreen by 

strongly absorbing UV light, in turn protecting fragile benthic 

habitats such as those in the Florida National Marine Sanctuary 

(Williams, 2002). Some species of phytoplankton flourish in 

increased CDOM concentrations as CDOM inputs to coastal 

waters, whether from river runoff or the upwelling of deep 

water, are frequently accompanied by large inputs of nutrient 

concentrations that promote phytoplankton growth (Coble et 

al., 2004). CDOM can further impact organisms via the 

decrease of toxicity of heavy metals (Wright and Mason, 

1999), and providing organic carbon to phytoplankton as an 

energy source via mixotrophic growth (Lewitus et al., 1999; 

Doblin et al., 1999; Lomas et al., 2001).  

The organic compounds in CDOM are natural and have a 

high reactivity in water that can lead to both positive and 

negative environmental effects (Coble et al., 2004). The 

reactivity of organic compounds may decrease dissolved 

oxygen concentrations in waterways, resulting in a release of 

nutrients from the sediment (Bushaw et al., 1996). 

Eutrophication can occur from this nutrient release (Coble et 

al., 2004). Conversely, CDOM extracts specific trace metals 

(i.e., copper; Kieber et al., 2004) and polyaromatic 

hydrocarbons, which decreases their toxicity to surrounding 

organisms (Coble et al., 2004). CDOM reactivity is enhanced 

by sunlight and can act as a catalyst for the disruption of non-

colored compounds, such as organic pollutants (Coble et al., 

2004). Large amounts of ultraviolet radiation can deteriorate 

CDOM, releasing organic compounds in the process that are 

necessary for phytoplankton and bacterial growth (Miller and 

Moran, 1997) such as essential elements (i.e., nitrogen) and 

trace metals (Coble et al., 2004).   

CDOM can be measured via absorbance or fluorescence 

techniques. Absorbance is a measurement of the common 

logarithm of the ratio of incident to transmitted spectral radiant 

power through a material (IUPAC, 2006). The understanding 

of CDOM distributions, the processes controlling CDOM, and 

its optical properties influences are hindered by methods used 

for absorbance measurement (D’sa et al., 1999). 
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Spectrophotometers with 5- and 10-cm optical cells can 

measure CDOM absorption with satisfactory sensitivity in the 

UV and visible wavebands for copious coastal and shelf waters. 

However, in oligotrophic (low-nutrient) waters, the levels of 

CDOM absorption reach the detection limit of these 

instruments. Measuring the absorption spectra of CDOM in 

waters like this requires long pathlength cells (Bricaud et al., 

1981; Peacock et al., 1994) or sample concentration (Carder et 

al., 1989). These approaches are tedious and time consuming.  

Fluorescence is a measurement of the different 

wavelengths of light emitted when a solution is exposed to 

short wavelength light. This is dependent on the amount of 

absorbing material, the absorbance characteristics of the 

solution contents, and the optical path-length the light must 

travel through the sample (Slonecker et al., 2016). CDOM 

sensors usually use fluorescence to characterize CDOM in situ 

as opposed to absorbance due to the lower cost and higher 

sensitivity of field fluorometers (Slonecker et al., 2016). 

Fluorescent dissolved organic matter (FDOM) is the part 

of CDOM that fluoresces and is often accepted as a proxy for 

CDOM (Slonecker et al., 2016). Measurements of CDOM 

fluorescence have a long history in oceanography as a gauge 

for terrestrial humic substances in the coastal ocean (Coble, 

2007). In the past twenty years, fluorescence spectroscopy 

techniques have been utilized to determine the composition and 

dynamics of DOM in aquatic environments (Coble, 1996; 

Stedmon et al., 2003; Chen et al., 2004; Spencer et al., 2007a; 

Jiang et al., 2008; Kowalczuk et al., 2009; Yamashita et al., 

2010). However, modern laboratory fluorescence 

spectrofluorometers (e.g., Shimadzu RF5301 

spectrofluorometer, Shimadzu Inc.; Zhang et al., 2007; Foden 

et al., 2008; Singh et al., 2010) are too bulky for frequent use 

in the field and the measurement scans are time consuming.  

There are three different forms of spectral data involved 

in the calculations of CDOM and comparing among these 

different units and equivalencies remains a significant obstacle 

(Slonecker et al., 2016). Laboratory methods typically involve 

measurements of absorbance at a precise wavelength between 

250 and 440 nm (Slonecker et al., 2016). In situ sensors are 

based on fluorescence measurements where the excitation 

wavelength is roughly 350 nm and the emission wavelength is 

about 450 nm (Brezonik et al., 2015). Successful overhead 

remote sensing applications are established on reflectance 

measurements commonly at wavelengths greater than 500 nm 

(Kutser et al., 2005; Menken et al., 2006; Brezonik et al., 

2015).   

CDOM measurements are also not reported uniformly 

(Slonecker et al., 2016). CDOM can be conveyed as a function 

of color at 440 nm (C440; Brezonik et al., 2005). Marine 

chemists routinely express absorption coefficients in Naperian 

(spectral absorbance coefficient) units, whereas freshwater and 

wastewater communities typically use decadal absorption 

coefficients (Aiken, 2014). CDOM fluorometers report 

measurements in relative fluorescence units (RFUs) and 

several United States Geological Survey (USGS) gaging 

stations measure CDOM through fluorescence techniques and 

record CDOM concentrations as units of a Quinine Sulfate 

Equivalents (QSE; Slonecker et al., 2016). Quinine been used 

as a standard in fluorometric analyses due to its highly 

flourescent properties and has become a standard for in situ 

recording of CDOM fluorescence, which can also be reported 

in Quinine Sulfate Units (QSU; Slonecker et al., 2016). 

Besides variability in measurements and reporting values, an 

additional difficulty with CDOM analysis is the size and cost 

of the instruments. In the 1990’s, these instruments cost 

hundreds of thousands of dollars, took up a majority of the lab’s 

floor space, were operated by doctoral-level staff, and were 

used primarily within core facilities (Okimoto and Fung, 2016). 

Chemists would prepare the samples, send them out for 

analysis, and wait for a simple spectrum to return several days 

later (Okimoto and Fung, 2016). With the more recent 

advances in materials science, microprocessors/ data storage 

and software languages, these factors are beginning to be less 

of a problem (Okimoto and Fung, 2016). For example, the 

current base cost of a spectrofluometer, the leading CDOM 

analysis tool, is $45,000 USD but can cost more than $300,000 

USD depending on accessories, detectors, and ultimately the 

application of the end user (Figure 1). 

 

 
 

Figure 1. Horiba PTI QuantaMasterTM 8000 Series 

fluorometer (computer system not shown; Horiba, 2018).  

 

A typical fluorometer (e.g., Figure 1) measures 36 x 28 x 

12 inches (WxDxH) excluding the required computer system. 

In recent years, portable or submersible field fluorometers have 

been employed to acquire rapid, real-time, high-frequency 

measurements of DOM in aquatic environments 

(Sivaprakasam and Killinger, 2003; Baker et al., 2004; Conmy 

et al., 2004; Killinger and Sivaprakasam, 2006; Chekalyuk and 

Hafez, 2008; Suping et al., 2010; Tedetti et al., 2010; 

Chekalyuk and Hafez, 2013; Tedetti et al., 2013). For example, 

StellarNet has created a portable UV-VIS spectrometer with 

280-900 nm wavelength range that is field-appropriate and 

cost-effective (~ $5,500 USD; StellarNet, 2018; Figure 2).  
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Figure 2. StellarNet BLACK-Comet spectrometer including 

computer setup (StellarNet, 2018). 

 

In this study, the accuracy of a StellarNet spectrometer 

was tested against a traditional spectrophotometer (Photon 

Technologies International (PTI)) with water samples to 

determine the validity as well as possible disadvantages of a 

smaller, cheaper spectrometer in the face of the older, bulkier 

technology using samples collected from an urban salt marsh.  

 

Experimental Procedures  

Study site 

The second-largest tributary to Boston Harbor (Boston, 

MA) is the Neponset River (Gardner et al., 2005). The 

watershed draining into the Neponset River is made up of 14 

cities and towns and is home to roughly 300,000 people 

according to Huang and Chen (2009). The Neponset Estuary is 

approximately 7 km long and changes in width from about 25 

to 250 m at mean lower low water (MLLW; Schiebel et al., 

2018). The Neponset Salt Marsh (42.277309 N, 71.045837 W) 

has a total area of 1.1 x 106 m2 and is composed of three 

dominant plant species: Spartina alterniflora (S. alterniflora) 

which dominates the lower marsh habitat, the invasive reed 

Phragmites australis (P. australis) which dominates the high 

marsh habitat and Spartina patens (S. patens) which lies in 

between the two on the marsh platform (Schiebel et al., 2018). 

Approximately 29% of the total surface area is below the 

MLLW mark and is usually covered by water with little to no 

vegetation (Schiebel et al., 2018). Typical New England salt 

marsh sediment is made up of peat, with water content ranging 

from 30 to 60% (Redfield, 1972) and sediment organic carbon 

values ranging between 0.05 and 0.15 g cm-3 (Artigas et al., 

2015), as confirmed by observations.  

 

Sample collection 

S. alterniflora and S. patens samples were collected in 

October 2017 for a separate experiment and publication 

(Schiebel et al., in prep). Living and detrital biomass was 

removed (i.e., cut from the stem of the plant) at the same 1- and 

10-m distances from the creek bank in the salt marsh. Plant 

biomass samples were collected by hand within the same 100 

m2 plot (variations within plant species by area were not 

explored) from the marsh for each experiment and cleaned 

using deionized water to remove any sediment. Duplicates (i.e., 

2 separate samples of plant matter were exposed to each 

treatment) were taken from plants of similar height. Clean 

sample splits were weighed and then placed in a Fisher Isotemp 

200 Series oven within two hours of sample collection for one 

week at 50°C to perform water content analysis and determine 

dry weights.  

Ten grams of the remaining fresh, cleaned samples were 

then placed directly into 1-liter, opaque (0% transmission) 

Teflon bottles filled with one liter of Boston Harbor seawater 

with relatively low (compared to marsh concentrations) 

CDOM (approximately 20 QSU) concentrations. Each 

incubation experiment was initiated on the same day that 

samples were collected (Day 0). Four total sample bottles were 

created for each plant species for eight samples total (i.e., two 

S. patens living biomass samples and two S. patens detrital 

biomass samples with corresponding samples of S. 

alterniflora). Leaching experiments were conducted for ten 

days to encompass the initial, rapid release of carbon from 

plant matter (Chapin et al., 2011; Wang et al., 2014) with 

discrete duplicate samples per treatment taken on days 0, 1, 5, 

and 10 for a total of 64 samples (4 sample days in duplicate for 

each of 8 sample treatments).  

 

Sample analysis  

CDOM samples were filtered through a precombusted 

0.7-μm glass fiber filter (Whatman GF/F), stored in 

precombusted (4 hours at 500°C) 40-mL amber borosilicate 

glass vials with Teflonlined screw caps, and frozen until initial 

analysis.  

CDOM fluorescence was first measured on all 64 samples 

using a PTI QM-1 spectrofluorometer in 2017 within one week 

of sample collection. Single fluorescence emission scans from 

350 to 650 nm were collected for an excitation wavelength of 

337 nm. The fluorescence of Milli-Q water (<5 QSU) was 

subtracted from sample spectra before integration with the 

level of blank relative to the level of samples greater than 1%. 

Peak areas were integrated and converted to QSUs, where 1 

QSU is equivalent to the fluorescence emission of 1 μg L-1 of 

quinine sulfate solution (pH 2) integrated from 350 to 650 nm 

at an excitation wavelength of 337 nm (Chen and Gardner, 

2004). All sample data were collected using a 1-cm quartz 

cuvette and expressed in QSUs. With samples above 100 QSU 

(up to 3 m-1), a controlled dilution approach (CDA) was 

employed (Kothawala et al., 2013; Zeng et al., 2016), in which 

samples were diluted with Milli-Q water to levels such that the 

inner filter effect (IFE) was negligible (Turner, 1985). The 

original fluorescence was then calculated based on the dilution 

factor. 

Of the 64 total samples analyzed in 2017, only 36 samples 

had enough sample remaining to re-run in 2018. These 36 

samples and the exact same standards were analyzed using a 

StellarNet Miniature Spectrometer in September 2018 (the 

original samples remained frozen and standards were 

refrigerated in between analyses). Sample wavelengths were 

integrated from 350 to 650 nm at an excitation wavelength of 

337 nm. Emitted photons were measured at 90 degrees incident 

from the excitation source so that only emitted light was 

measured. Emitted light was split into different wavelengths 

via diffraction and a detector measured the number of photons 

at each wavelength and a computer produced a spectrum of 

intensity (photon count) versus wavelength. Microsoft Excel 

was implemented to convert the photon count from the 

instrument to a CDOM concentration in QSU via a trapezoidal 

calculation. For each data point in the spectrum, two y-axis 

points were averaged and divided by the x-distance between 

the y-axis points. In this way, 1 nm between each data point or 
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0.23 nm between each data point is represented appropriately 

and QSU values from each instrument can be compared. All 

parameters (wavelength range, integration time, etc.) were the 

same for both instruments. 

 

Statistical analysis 

A two-sample assuming equal variances t-test was applied 

to the treatment groups (PTI and StellarNet). A two-sample 

assuming equal variances t-test compares whether the average 

difference between two groups is significantly different or not 

at the 95% confidence interval (Zar, 1999). When run in excel, 

the two-sample assuming equal variance t-test is chosen in the 

data analysis tool pack and the two desired rows of data are 

highlighted for comparison. The output is provided in a table 

format with a p-value, t-statistic, and a t-critical value for both 

one- and two-tailed analysis. In this case, the two-tailed 

distribution values were used because there was not a previous 

assumption for how the instruments would be significantly 

different (i.e., one instrument reads higher or lower). The two-

tailed test accounts for the possibility of either result. In other 

words, the two-tailed tests in both directions of the average 

mean. There are two important outputs to consider from a two-

sample assuming equal variances t-test. First, if the t-critical 

value is higher than the t-statistic, then the two populations are 

not significantly different from each other. Conversely, if the t-

statistic is higher than the t-critical value, then the two 

populations are significantly different. The second important 

output of the two-sample assuming equal variances t-test is the 

p-value (two-tailed here). If the p-value is below 0.05, then the 

data is reliable and not due to chance at the 95% confidence 

interval (Zar, 1999). 

 

Results  

Correlation between instruments 

The correlation between the two instruments for the 36 

samples analyzed was average when all samples (i.e., outliers) 

were included in the dataset (Figure 3).  

 

 
Figure 3: All samples (n=36) analyzed on a PTI QM-1 

spectrofluorometer and a StellarNet Miniature Spectrometer 

with outliers included.   

 

A total of 6 outliers were identified as needing strong 

dilutions (i.e., 3-fold dilutions or higher) and removed from the 

dataset, resulting in a strong linear correlation of the sample 

concentrations between instruments (Figure 4).  

 

 
Figure 4: Dataset with outliers (3-fold dilutions or higher) 

removed (n=30) analyzed on a PTI QM-1 spectrofluorometer 

and a StellarNet Miniature Spectrometer.   

Statistics 

A two-sample assuming equal variances t-test was 

conducted to determine if the treatment groups (PTI and 

StellarNet) were significantly different from each other once 

the 6 outliers were removed (Table 1).  

 

Table 1. Results from two-sample assuming equal variances t-

test 

 
 

Because the p-value is greater than 0.05, and the t-statistic 

is less than the t-critical value, the two treatments are 

statistically the same.  

The systemic dilution error only occurred in highly 

concentrated samples (3-fold dilutions or higher). Not all 

dilutions were outliers; dilutions that only required 1- or 2- fold 

dilutions were well correlated on both instruments (Figure 4). 

A total of 13 samples needed to be diluted in the total dataset 

(36 samples), 6 of which were highly concentrated (outliers) 

and 7 of which were low to moderate dilutions that were not 

considered outliers.  

 

Discussion 

The difference between the concentrations observed for 

more concentrated samples could be due to two different 

phenomena. First, sample handling could create a difference in 

the concentration of the samples between different instruments. 

These samples were run by two different analysts at two 

different times. The six intense dilutions, in turn, were also 

completed by two different analysts. Sampling handling and 

dilution calculations, if handled differently, could result in a 

difference in CDOM concentrations between the two 

instruments (Miller et al., 2002).  

More likely, the multiple freezing and thawing of these 

samples over the course of analysis and/or the storage 

techniques used could account for the variance in the strongly 

diluted samples (Mueller and Austin, 1995). The primary 

causes of sample instability over time are due to microbial and 

photochemical degradation and the effects of these processes 

on DOM absorbance and fluorescence in aquatic samples is 

well documented (Moran et al., 2000; Del Vecchio and Blough, 

2004; Tzortziou et al., 2007; Wickland et al., 2007; Osburn et 
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al., 2009). Standard CDOM protocols call for sample storage 

in cold (approximately 4°C), dark environments for this reason. 

While samples were stored this way, they were removed, 

thawed, and run many times over the course of the year that 

could have led to variations in the samples with higher CDOM 

concentrations.  

CDOM protocols call for analysis as soon as possible after 

collection to avoid any impacts from microbes and/or sunlight. 

There is little consensus on the amount of time for which it is 

appropriate to store CDOM samples. A National Aeronautics 

and Space Administration (NASA) study found no difference 

in CDOM absorption values for refrigerated samples re-

analyzed within 24 hours (Mitchell et al., 2000). Similarly, 

Spencer et al. (2007b) found no difference in sample 

reproducibility after 7 days. However, they found that 

analytical reproducibility decreased after 2 months due to a 

shift from protein-like fluorophores in water to more fulvic-like 

fluorophores. Hudson et al. (2009) also observed a decrease in 

intensity over time in refrigerated samples and a great removal 

of protein-like fluorescence compared to fulvic-like 

fluorescence as well. It is therefore assumed that the length of 

time (1 year) that the samples were frozen (and thawed multiple 

times) led to the discrepancy between sample concentrations 

between the two instruments for highly concentrated samples.  

In addition to the dilution error observed, one drawback 

of the StellarNet instrument is the output signal. The PTI 

instrument output is in counts that are directly converted to the 

CDOM concentration of the standards used (QSU) in Excel. 

The analyst is able to copy and paste the counts from the 

instrument into Excel and, using a simple formula, obtain QSU 

values. This is quick and efficient. Conversely, the StellarNet 

spectrometer output is photons and the software does not have 

an area integration function that calculates the entire emission 

spectra in one output. Thus, a more complicated, longer 

procedure is needed to convert the photons under the curve of 

the emission spectra to a CDOM concentration. A trapezoidal 

calculation must be completed in Microsoft Excel for each data 

point in the spectrum as noted above. This results in several 

open programs at once with multiple Excel sheets, is easily 

confusing, and can lead to errors in reporting if not done 

properly. For field sample analysis using the StellarNet 

instrument, it is recommended that samples be analyzed in the 

field and then the data converted at a later time (the spectra and 

data are saved immediately so no data is lost in the field). 

 

Conclusion 

CDOM is important for moderating aquatic processes. 

CDOM measurements have been a focus in the literature since 

the 1980s and current CDOM analysis is conducted using 

spectrophotometers that are large and bulky as well as 

expensive. In this study, the accuracy of a compact, 

inexpensive field spectrometer (StellarNet) was tested for 

accuracy against a traditional spectrophotometer (PTI). A total 

of 36 total samples were collected from the Neponset River Salt 

Marsh in Boston, Massachusetts and analyzed on both 

instruments with the same set of standards for comparison (R2 

= 0.5027). Highly concentrated samples (i.e., 3-fold dilutions 

or higher; n=6) were identified as outliers and removed from 

the dataset, resulting in a strong linear correlation of the sample 

concentrations between instruments (R2 = 0.9278). 

Statistically, the two treatment groups were not different (p-

value > 0.05). The systemic dilution error can be attributed to 

the length of time (1 year) between sample analysis (i.e., 

freezing/thawing effects) and/or sampling errors between 

analysts on the different instruments. This study shows that the 

less expensive, smaller StellarNet spectrometer is both reliable 

in addition to field appropriate. One drawback of the StellarNet 

instrument is the need to convert the output of the instrument 

(photons) to a concentration (QSU) versus the PTI instrument, 

although this is still amenable to the more expensive, lab-only 

option as data can be stored and analyzed at a later date if 

needed. Future studies would involve determining the time for 

which CDOM samples can be frozen with no difference in 

reproducibility.  
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