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ABSTRACT 
 
Studies on sleep-related crashes show that about 15% of accidents are classified as sleep-related accidents. Further-
more, daytime sleepiness is common in young drivers. This means the chances of car crashes due to drowsiness are 
high. The proposed research attempts to tackle this issue and alert the driver in case of drowsiness and bring the driver 
back to the consciousness of the surroundings to avoid crashes. The current study aims to develop an Android mobile 
application, which will be used for drowsiness detection in drivers. It compares multiple Deep Learning, Convolu-
tional Neural Network (CNN) models including MobileNet, VGG16, and a custom CNN to detect user’s faces and 
analyze the eye closure rate. The models use Haar Cascade to detect the human face and eyes. If the closure rate goes 
above a certain threshold, an alarm will be triggered on the mobile phone alerting the driver of their drowsiness. The 
trigger will then be logged on to the user account to allow users to access the logs later and analyze their drowsiness 
patterns also. The proposed system is simplified to eliminate the need for external equipment like head mounts or 
sensors that may cause driver discomfort.  However, there is scope for enhancing the app by adding complex features 
such as sleep schedules, sleep-related information, facts, emergency triggers, and so on. 
 

Introduction 
 
Humans have busy routines in the modern day due to work and responsibilities. This makes it difficult to manage 
time, resulting in a lack of sleep. This may cause sleep-related drowsiness for drivers, causing a lack of focus on the 
road and lower alertness to react on time. Becoming drowsy whilst driving can serve as a huge risk not only to the 
driver’s life but also to passengers. By losing focus, the driver becomes prone to vehicle accidents. Vehicles generally 
travel between the speed of 100-120 km/h on the main roads. At these speeds, the time allowed to the driver between 
detecting danger and reacting to the detected danger is very low. Adding drowsiness to the already low reaction time 
on this high of a speed is riskier than that on lower speeds. High-speed crashes can lead to severe injuries or worse, 
loss of life.  

The proposed research develops an application that can alert the driver once they are detected to be drowsy 
through an alarm that is triggered on their mobile phone. It helps the driver gain consciousness back and take preven-
tative measures such as resting on the side or taking a break to freshen up before they continue driving. It is expected 
that using this technology will decrease the number of sleep-related accidents. The application also provides the user 
with a summary of their drowsiness. This summary will let the user analyze their sleep patterns in comparison to 
drowsiness and help them find an optimal routine where they have sufficient sleep before driving or investigate issues 
other than sleep that might make them drowsy. Furthermore, the research is based on deep learning, hence the training 
is automated without the need for human intervention. This allows to achieve better accuracy in a shorter duration of 
time to detect drowsiness and send an alert. The paper is structured in five parts, including related works, design, 
implementation, results, and conclusion. 
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Related Works 
 
Singh and Papanikolopoulos (1999) suggested a vison-based, non-invasive approach to determine the drowsiness level 
in a driver. They use a color video camera, pointing directly at the driver’s face. The video input from this camera is 
used to detect microsleep patterns by tracking the driver’s eyes. If the eyes are closed for 5-6 seconds, the person is 
detected to be drowsy. It is claimed that the accuracy of the system is 95% with up to 30-degree head tilt and 45-
degree head rotation tolerance. The drawback of this system, however, is in a practical driving scenario, the head 
movement will reduce the accuracy of the program, resulting in more frequent false alarms. In a study by Sayed and 
Eskandarian (2001), they used Artificial Neural Networks (ANN) to detect driver drowsiness. This detection is based 
on the driving pattern of the driver. The ANN uses the steering angles of the vehicle to detect any sudden changes in 
the angle. The data was collected using a driving simulator. The results had an accuracy of 90%. However, an issue 
with this method of drowsiness detection is that it cannot alert the driver before the car is out of control, which leaves 
the driver with a lower time to respond.  

There have also been attempts to detect drowsiness using intrusive methods that use sensors attached to the 
driver. An example of this is the method proposed by Zhang, Wang, and Fu (2014). They measure the fatigue level of 
the driver by using signals from an electroencephalogram, electromyogram, and electrooculogram. This data is fed to 
the ANN to determine the fatigue level of the driver. Although the accuracy of this proposition is extremely high 
(96.5% - 99.5%), the major issue with it is that it is an intrusive method which means the user will not only have to 
purchase additional equipment, but also must wear sensors that might affect the quality of driving.  

In the research by Lashkov, Kashevnik, Shilov, Parfenov and Shabaev (2019), they use built-in camera phone 
camera to track the facial features of the driver through Android devices. These features include head movements, 
mouth state, and eye state. The features are used to analyze the fatigue level of the driver as well as their focus level. 
An early warning is given in case the driver is drowsy or has lost focus. It uses CNN with OpenCV and Dlib with the 
COCO dataset for this purpose and has both online and offline modes. One of the issues with this, however, is that the 
application needs to track multiple features of the face, hence requiring heavy processing. This, in turn, means that a 
higher-end Android device will be required to work which might not be accessible by everyone.  

Rahman, Islam et al (2020) propose a Convolutional Neural Network (CNN) called EyeNet as shown in 
Figure 1. This model is used for eye state classification tested over three datasets. These include CEW, ZJU, and MRL 
Eye. The model is evaluated under different conditions such as lighting, reflection, devices, etc. The accuracy is shown 
to be 99%, which is a 3% improvement from classic previous eye states classifiers such as SVMs or shallow neural 
networks. To create CNN, the authors used Keras with a TensorFlow backend. The highest accuracy is shown when 
the model is trained through the ZJU dataset and tested against the CEW dataset. 
 

 
 
Figure 1. General scheme for drowsiness state detection (Lashkov et. al., 2019) 
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Design  
 
The general design of the system is illustrated in Figure 2. The video input from the mobile phone’s camera is used to 
detect eyes on the user face. This is then run through the trained model to classify the eyes as opened or closed. If the 
eyes remain closed for a certain time, the alarm on the phone is triggered, and the event is logged. The system pipeline 
is shown in Figure 3. First, the data is gathered, next it is preprocessed. Since the closed eyes and open eyes class data 
contains 2000 images each, the dataset is balanced, hence does not require to be balanced. After which it is split into 
training and validation. After this, the model is built and trained, followed by an evaluation, fine tuning (if needed), 
and finally deploying the project.  

 

Implementation 
 
Dataset 
 
The dataset (Patil, 2021) used for training the DL model is based on the MRL dataset. The MRL dataset (MRL, 2021) 
consists of data from 37 people, where 8 properties for each person are captured including gender, glasses, eye state, 
etc. From this dataset, the used dataset takes the images related to the eye state, and the data is split into two folders: 
one for open eyes, and the other for closed eyes. These folders contain mixed images from the participants, 2000 
images in each folder. This makes the total number of images 4000. The images are in Portable Network Graphics 
(PNG) format, approximately 4KB per image. This dataset was chosen as it is based on a popular dataset, and has a 
variety of eye images, hence allowing the model to be trained with higher accuracy. The MRL dataset is reference by 
multiple literatures, including the research by Rahman, et al (2020), as discussed in the literature review section. 
 

                   
 
         Figure 2. General System Design                                Figure 3. Pipeline Flow 
 

6th Middle East College Student Research 
Conference Proceeding

ISSN: 2167-1907 www.JSR.org 3



Preprocessing 
 
The dataset is evenly split as two-thousand images for each class (opened eyes or closed eyes), hence the need for 
balancing the dataset is eliminated. The images are resized to 244 by 244 pixels to give input to the models for training. 
The data is normalized and serialized using the pickle library. 
 
Architecture 
 
All models are trained on 15 epochs with an earlystopping callback with a patience of 3 to avoid overfitting. The 
learning rate is set to be 0.1, with a binary cross entropy loss, Adam optimizer, and Sigmoid activation function. All 
models also use the same data pre-processing techniques for the same purpose. The models use feature extraction 
using Haar Cascade to detect the human face and eyes, which is then used for classification. The hyperparameters for 
all models are kept constant for a better comparison. 
 
Training Device 
 
The device used to train the model is an HP Omen 15. It has a 64-bit Windows 10 operating system, Intel Core i7 6 
core processor, Nvidia GeForce GTX 1070 Max-Q GPU, 6 GB CPU, 32 GB RAM, and 256 GB SSD along with 1 
TB HDD. 
 
MobileNet Architecture 
This CNN architecture is one of the architectures provided by Keras. It uses depth-wise separable convolutions for 
building lightweight, but deep, neural networks. The model uses transfer learning from the pre-trained MobilNet Ar-
chitecture. The input form the first layer, and the output from the fourth layer from the bottom up is taken as the base 
input and output. Next, the flatten, dense, and activation layers are added, which use the base output. This decreases 
the trainable parameters by approximately one million. The model is then compiled and trained for evaluation. 
 
VGG16 Architecture 
The VGG16 CNN architecture uses the pre-trained VGG16 architecture form Keras, consisting of 16 CNN layers. 
The weights used for this model are the default weights used to train the ImageNet dataset, since these weights seem 
to be the most optimal for this architecture. The first layer is used as the base input, and the second last layer is used 
as the base output. A flattened, dense, and activation layer is then added, after which the model is compiled and trained. 
The reduction in the trainable parameters is one twenty-four million. Next, the model is compiled, trained, and evalu-
ated. 
 
Custom Architecture 
This CNN architecture is based on 9 custom layers added to the model. Mainly consisting of convolutional and batch 
normalization layers, the architecture can be shown in Figure 4. 
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Figure 4. Custom CNN Architecture 
 

Once the architecture is developed, the model is compiled and trained based on the architecture. 

Results 
 
Using the MobileNet architecture, both the training accuracy and the validation accuracy is 100%. It uses 5/15 epochs 
to achieve this due to early stopping. The Training-Validation Loss Curve is depicted in  
Figure 5. 
 

            
 
Figure 5. Training-Validation Loss Curve – MobileNet          Figure 6. Training-Validation Loss Curve – VGG16 
 

The model that uses the VGG16 architecture also presents an accuracy of 100%, however, it takes 6/15 
epochs to train the model, with early stopping. Figure 6 shows the Training and Validation Loss Curve. 
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The custom architecture gives an accuracy of 98.75% and takes 10/15 epochs to train the model based on 
earlystopping callback. The Training-Validation Loss Curve is illustrated in Figure 1. 

 
 
Figure 1. Training-Validation Loss Curve – Custom Architecture 
 

The accuracy obtained for each model is presented in Table 1. 
 
Table 1. Accuracy Comparison 
 

Model Accuracy 
(%) 

MobileNet 100 
VGG16 100 
Custom 98.75 

 
 

Conclusion 
 
It is concluded that both MobileNet and VGG16 have the best accuracy out of the three models considered, however, 
since MobileNet is less intensive on the computational power, this model will be used for the mobile application to 
allow a wider range of devices to handle the model. In the future, the system can include additional features such as 
sending notifications to emergency contacts. Furthermore, the accuracy of the model can be improved by incorporating 
other facial features such as yawning, head tilt, etc. In addition, the model can also be trained to provide better results 
in different environments such as low-lit areas. 
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