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ABSTRACT 
 
During COVID-19, the air industry has shrunk due to drastically reduced demand and flight bans. Air transport net-
work optimization is significant in fleet routing design, which helps the air company to make a decision to open the 
new routes while maximizing the profit. We want to study when an area is subjected to stability shocks that prevent 
air trac from entering, how air planners comprehensively consider the factors to design new fleeting routes while 
optimizing the profit. In this research, we start by developing a baseline model and then a networked model, both 
theoretical, to simulate the situation for an air company and provide optimization results. We find a simple situation 
to determine: if a route has a positive maximized expected profit, we will decide to open the route. The optimal results 
obtained from the model are proved to be optimal by mathematics analysis in the study. Several potential future study 
directions relevant to the research are discussed, including stochastic demand and network connection, which could 
be better explain the situation of air transport network design and thus be more applicable in reality.  
 

Introduction 
 
Fleet routing is a significant part of the formation of the air transport network. Several factors must be considered in 
designing new air routes such as hub location, passenger demand, policy, and resource availability to maximize profit. 
Air planners try to find an optimal situation for the network using these considerations. Other factors that may influ-
ence route design are resources, price, and fixed cost. However, some factors can also affect the network. Realistically, 
unforeseen circumstances happen in the air transport industry, such as changes in passenger demand and promulgated 
policies during pandemics (Barla & Constantatos, 2000). 

The transport industry was severely impacted by the COVID-19 pandemic, particularly air transport. Due to 
the drastically reduced demand for passengers and country-wide flight bans, airline companies were forced to cut 
routes, almost grounding entire fleets (Iacus et al., 2020). Major carriers even saw as much as a 60% decline in capacity 
(Josephs, 2020). As a result, the air company planners had to design fleet routes with careful consideration to maximize 
their expected profit. This research explores the factors that influence the decision of the planner on designing a fleet 
route in several settings. 

To develop a realistically applicable model, the study will identify and analyze several uncertainties within 
the industry. The primary aim of this research is to study how to form an air transport network in a practical situation 
with additional uncertainty to be considered. 

Like the model developed by Yang (2010), this study’s model focuses on network design. But there are some 
differences in the problems explored by the research. The study attempts to solve the demand of passengers on both 
sides of routes and the network structure with constraints (Yang, 2010). The study assumes that there is a point-to-
point network structure with two hubs on one route. An air transport planner can observe the price, cost, and proba-
bility of success for all air routes. The research will analyze the simplest scenario to understand the model. In this 
research, the planner can choose the air route between two locations 𝑖𝑖 and 𝑗𝑗 and naturally do so in a way that maximizes 
profit. The study plans to focus on the price of the ticket, the cost of designing and operating the air routes, and the 
probability of the successful flight of the routes. Mathematical analysis will include relevant factors (the expectation, 
utility, and profit function) to obtain the baseline model. From this base model, the research will extend to involve 
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more constraints and multiple hubs to develop a model with networks that better apply to the real world. Furthermore, 
the study wants to verify the results from the optimization under a simple constraint on the planner. 

The study begins with a literature review to explore research about network design with similar problems. 
The next section establishes the methods and includes notations, functions, and assumptions that will be applied in the 
models. The results are presented in three subsections that describe the approaches used to obtain the baseline model, 
the development of the baseline model with additional constraints to the network model, and the optimization results. 
Finally, the final portion of the study discusses the conclusions from the modeling and provides some potential direc-
tions for this research. 
 

Literature Review 
 
This section summarizes the findings from the literature, which offer related information and specific details relevant 
to air transport network optimization. The focus is on background, theorem, mathematical method, and model con-
struction. The research examines papers that study demand shocks, such as those related to disaster or pandemic-
induced shocks. Additionally, this study seeks to identify previous research about air transport, which could inform 
the elements this study needs to consider in its model and to have a more detailed view of these topics. Moreover, the 
study looks through the research with network optimization to identify the ideal math method to handle the uncertainty 
and the way to construct the networked model. The research found several sources that could help to better understand 
the background of the topic and have a detailed view of the application of the concept. The review discusses the 
following order of topics: (1) air transport models, (2) network model construction, and (3) methods for solving opti-
mization problems. 
 
Air Transport Models 
 
This section discusses the research on air transport models, which could offer guidelines to understand the air route 
design and the elements that need to be considered. 

Relevant models and basic knowledge on air transport are presented by Yang (2010) and Soylu and Katip 
(2019), which helps to analyze the topics and develop the model. The topic of these two research is airline network 
design, and the model in this study is about network optimization—both topics are closely related to the search. The 
proposed research could apply the methods and parameters from other authors to build the new models. Additionally, 
both studies identify the airline network design problems, giving us a clear view of how to modify and improve the 
research questions. Our research will apply the guidance to improve and analyze the topics in detail. In Yang (2010), 
the author applies the expectation to handle the uncertainty in the objective function. This research will use the expec-
tation function to process the uncertainty in the model in the following model sections. 
 
Network Model Construction 
 
This section explores network model construction and the methods used to develop the model. 

Yan and Tseng (2002) offer some relevant model constructions by describing their model; they provide guid-
ance on how to develop a networked model from step-by-step analysis. This research will apply Yan and Tseng’s 
method in the model development since the research plan is to analyze the topics and develop the model from the 
baseline then add complexities, which will discuss more in the following model sections. Yan and Tseng’s way of 
building the model could potentially be applied to the proposed research. Yan & Tseng’s study gives an insight view 
about the elements that affected air transport, such as nodes and demand (2002).  

Additionally, the research by Barbarosoǧlu and Arda (2004) observes some background information and 
related models. Their article explores the model of material flow over an urban transportation network during a 
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disaster, and they aimed to develop an efficient response to the disaster via a decision-making process (Barbarosoǧlu  
& Arda, 2004). The timing and impact of a disaster are hard to predict; this is a primary concern of trying to prepare 
for world pandemics. The article considers the uncertainty and the vulnerability of the transportation system, which 
influences the supply, capacity, and demand. The uncertainty will be included in the proposed research. 
 
Methods for Solving Optimization Problems  
 
This part will discuss the research of optimization. The proposed research wants to find a method that could be applied 
when trying to obtain the result of the optimization. 

Liu, et al. (2018) give some relevant optimization methods and models. The authors developed a model to 
assign the new air fleeting under stochastic demand to maximize the expected total profit (Liu et al., 2018). This article 
assumes the situation that the decision-maker is risk-averse (Liu et al., 2018). The proposed research will likely have 
some discussion about the type of decision-maker that could be based upon this article. The optimization model de-
veloped by the authors applies the decision variable in the mixed-integer programming model (Liu, et al., 2018), which 
could provide some guidance as we develop our model. The model developed by Liu (2018) makes the decision 
variable in the requirement 0 and 1. 

The research discussed in the literature review section generalizes a detailed view of the air transport network 
and the elements in it.  This research includes the nodes, routes, demand and supplies, and how to build relationships 
among them. And these studies inform that the expectation function could help us to handle the uncertainty. Moreover, 
this research has guidance about how to construct a networked model. Additionally, the research offered the method 
of how to design a model from baseline to more complex through step-by-step analysis. 
 

Methods 
 
Model 
 
The section will explore and present the notations, functions, and assumptions necessary to build a mathematical 
understanding of air transport. To begin, the notations used for the research models are listed in Table 1. 

The airline planner has to decide whether or not to open a new route between any pairs of location 𝑖𝑖 and 
location 𝑗𝑗 in a network with 𝑛𝑛 hubs. 𝜃𝜃𝑖𝑖𝑗𝑗 satisfies 0 ≤  𝜃𝜃𝑖𝑖𝑖𝑖 ≤  1. 𝛾𝛾 denotes the constant relative risk aversion (𝛾𝛾 ≠  1) 
in the utility function. 𝛾𝛾 =  0 means the decision-maker is risk-neutral. 𝛾𝛾 >  0 means the decision-maker is risk-
averse. For the demand function 𝑁𝑁𝑖𝑖𝑖𝑖 =  𝑎𝑎 − 𝑏𝑏 ∗  𝑃𝑃𝑖𝑖𝑖𝑖 , 𝑏𝑏 >  0. The decision variable for air-route design is denoted 
by 𝑋𝑋 ∈  [0,1]𝑛𝑛×𝑛𝑛. If and only if 𝑋𝑋𝑖𝑖𝑖𝑖 =  1, the air planner decides to set up the flight from 𝑖𝑖 to 𝑗𝑗. Of course, if 𝑋𝑋𝑖𝑖𝑖𝑖 =  0, 
the planner decides not to build the new routes. 

Two cases in the model will be discussed: "not open the route" and "open the route". Under Jensen’s inequal-
ity (𝐸𝐸(𝑈𝑈(𝑋𝑋))  ≤  𝑈𝑈(𝐸𝐸(𝑋𝑋))), the baseline model will include the profit, utility, and expectation functions. First, the 
study will apply the profit function (𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)), which calculates the profit for each route by using the total revenue of 

selling the tickets minus the total cost of setting the routes. Then, the utility function𝑈𝑈(𝑌𝑌) = 𝑌𝑌1−γ

1−γ
 will be used to 

calculate the utility of the profit for each route. Finally, the expected function will be applied to find the expected 
utility of a route. 
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Table 1. Two List of Variables in Air Route Design 
 

n the number of hubs in the network 

i any departure hub in the network 

j any destination hub in the network 

𝜃𝜃𝑖𝑖𝑗𝑗  the probability of a successful flight from i to j 

𝑁𝑁𝑖𝑖𝑗𝑗 the total demand for the flight from i to j 

𝐶𝐶𝑖𝑖𝑗𝑗 the fixed cost of setting up and operating the air route from i to j 

𝑃𝑃𝑖𝑖𝑗𝑗 the price charged for the ticket of the air route from i to j 

𝛾𝛾 the constant relative risk aversion in the utility function 

𝑌𝑌 the profit in utility function 

𝑎𝑎 the outside factors other than price that affect demand 

𝑏𝑏 the elasticity of demand 

𝑋𝑋 ∈  [0,1]𝑛𝑛×𝑛𝑛  the decision variable for air-route design 

 
Case 1: Not open the route 
 
The study first considers the case where the planner decides to not open the route. In this case, 𝑋𝑋𝑖𝑖𝑖𝑖 =  0; therefore, no 
profit can be made. When the planner decides not to open the new route from A to B: 𝑋𝑋𝑖𝑖𝑖𝑖 =  0. The profit function is 
shown in Equation (1), the utility function is shown in Equation (2), and the expected value of utility function is shown 
in Equation (3). 
                                                           𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖� = 0                                                                        (1) 
 

                                                           U(Y) = U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�) = 𝑌𝑌1−γ

1−γ
=

𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)1−γ

1−γ
= 0                         (2) 

 
                                                         E(U(Y)) = E(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = 0                                              (3) 
                                                 
 
Case 2: Open the route 
 
When the planner decides to set up the new route from 𝑖𝑖 to 𝑗𝑗, 𝑋𝑋𝑖𝑖𝑖𝑖 =  1. The profit and utility can be calculated in the 
Equation (4) and Equation (5) respectively. 
 

                                                          𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖� = �
𝑁𝑁𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖 ,        𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝   θ𝑖𝑖𝑖𝑖

         −𝐶𝐶𝑖𝑖𝑖𝑖 ,                      𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝  1 − θ𝑖𝑖𝑖𝑖
     (4) 
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           U(Y) = U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�) = 𝑌𝑌1−γ

1−γ
=

𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)1−γ

1−γ
= �

(𝑁𝑁𝑖𝑖𝑖𝑖∗𝑃𝑃𝑖𝑖𝑖𝑖−𝐶𝐶𝑖𝑖𝑖𝑖)1−γ

1−γ
,        𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝   θ𝑖𝑖𝑖𝑖

      
(−𝐶𝐶𝑖𝑖𝑖𝑖)1−γ

1−γ
,                      𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝  1 − θ𝑖𝑖𝑖𝑖

(5) 

 
Therefore, the expected utility of profit can be computed by equation 6: 
 

                                              E(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = θ𝑖𝑖𝑖𝑖 ∗
�𝑁𝑁𝑖𝑖𝑖𝑖∗𝑃𝑃𝑖𝑖𝑖𝑖−𝐶𝐶𝑖𝑖𝑖𝑖�

1−γ

1−γ
+ �1 − θ𝑖𝑖𝑖𝑖� ∗

(−𝐶𝐶𝑖𝑖𝑖𝑖)1−γ

1−γ
       (6) 

 
 
The study will include two assumptions in the model: Risk neutral air planner and Linear demand function. 
 
Assumption 1: Risk-neutral air planner 
 
Assume that the air planner is risk neutral (𝛾𝛾 =  0). When 𝛾𝛾 =  0, it could conclude that the utility function is equal 
to the profit function. Moreover, by this assumption, the study expects the sum of the utility of all routes is the same 
as the sum of the expected utility of each route (𝐸𝐸(𝑈𝑈(Σ𝑌𝑌))  = Σ 𝐸𝐸 (𝑈𝑈(𝑌𝑌))). Under this assumption, the results of the 
functions obtained above in Equation (6) will change, input  𝛾𝛾 =  0 to the Case 1 and Case 2. 
 
Case 1 (Xij =  0)  
The utility function is equal to the profit function, as 𝛾𝛾 =  0. The profit function is shown as Equation (7), and the 
expected value of the utility of profit is computed in Equation (8): 
 
                                                            U(Y) = U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�) = 0                                               (7) 
 
                           E(U(Y)) = E(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = 𝐸𝐸(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�) = 0                                                (8) 
 
 
Case 2 (Xij =  1) 
Considering the utility function is equal to the profit function. Input the 𝛾𝛾 =  0 to Equation (5), the utility result is 
shown in the Equation (9): 
 

           U(Y) = U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�) = 𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖) = �
𝑁𝑁𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖 ,        𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝   θ𝑖𝑖𝑖𝑖

      −𝐶𝐶𝑖𝑖𝑖𝑖 ,                       𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝  1 − θ𝑖𝑖𝑖𝑖
       (9) 

 
 
If we apply equation (6) and the assumption 𝛾𝛾 = 0, equation (10) becomes: 
 
                                  E(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = θ𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖                                                    (10) 
 
Assumption 2: Linear demand function 
The air planner could decide on the price level 𝑃𝑃𝑖𝑖𝑗𝑗, which could further influence the demand 𝑁𝑁𝑖𝑖𝑗𝑗 in Equation (11). The 
research assumes that there is a linear relationship between the demand 𝑁𝑁𝑖𝑖𝑗𝑗 and ticket price 𝑃𝑃𝑖𝑖𝑗𝑗. 
 
                                                   𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖                                                             (11) 
 
In this case, a and b are constants, and we assume that there is a negative linear relationship between 𝑁𝑁𝑖𝑖𝑗𝑗 (demand) and 
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𝑃𝑃𝑖𝑖𝑗𝑗 (price level), so let 𝑏𝑏 >  0. Under this assumption, the function is relevant to the 𝑃𝑃𝑖𝑖𝑗𝑗 (price level). 
 
For Case 1, 𝑋𝑋𝑖𝑖𝑖𝑖 =  0, from equation (8), thereby equation 12 is equal to 0 as well:  
 
                                    𝐸𝐸(𝑈𝑈(𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)))  =  0                                                          (12) 
 
 
 
For Case 2, 𝑋𝑋𝑖𝑖𝑖𝑖 =  1, from equation (10) and linear demand function (11), the expected utility of profit is computed 
in Equation (13): 
                                  E(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = θ𝑖𝑖𝑖𝑖 ∗ (𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖) ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖                                            (13)     
 

Results 
 
The study applies optimization analysis to develop the baseline model and then adds several constraints to build a 
networked model. Finally, mathematical proofs are used to identify the optimal solution for a planner choosing to 
open a subset of possible routes in a network. 
 
Baseline Model 
 
This section will involve the simplest case (n = 2) for airline routes design as a baseline model. The air planner must 
decide whether to set up a new air route between two locations i and j by the standard technique of maximizing 
expected profit. Based on the functions obtained above, the research aimed to construct the model, explore the opti-
mization result, and make the best decision. 

The research explored expected profit in two possible cases in the model. Then two assumptions are applied 
to improve the functions. The model is then constructed, and the three possibilities (indifference, open, and not open) 
are explored. Finally, the optimization results are discussed. 

To further explore the model and decide based on the optimization in this part, the profit of the functions for 
"Not open the route"(𝑋𝑋𝑖𝑖𝑖𝑖 =  0) and "Open the route"(𝑋𝑋𝑖𝑖𝑖𝑖 =  1) were explored.  
 
Compare: Case 1 (𝑋𝑋𝑖𝑖𝑖𝑖 =  0), 𝐸𝐸(𝑈𝑈(𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)))  =  0  and Case 2 (𝑋𝑋𝑖𝑖𝑖𝑖 =  1), 𝐸𝐸(𝑈𝑈(𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)))  =  𝜃𝜃𝑖𝑖𝑖𝑖 ∗ (𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖) ∗
𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖   

 
In other words, it must compare 0 with 𝜃𝜃𝑖𝑖𝑖𝑖 ∗ (𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖) ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖 . Multiple values of 𝑃𝑃𝑖𝑖  can be used to find the 
profit. Then these profits can be compared to 0 to find whether an air planner needs to decide to open the route.  
 
Assume: The planner tries to maximize the profit. So the value of the parameters can be adjusted to find a maximized 
profit. In the model, the air planner could adjust the 𝑃𝑃𝑖𝑖𝑗𝑗 (price level) to influence 𝑁𝑁𝑖𝑖𝑗𝑗 (demand) and finally influence 
the profit. And assume that air planners will try to pursue the highest-profit route. From equation (13), the optimization 
model can be adjusted by sum to form equation (14): 

 
To find the cases that could have the maximized value of this equation (14), a quadratic equation about the variable 
of 𝑃𝑃𝑖𝑖 (price level) built. Simplify the equation (14) and rearrange the parameters, the result is shown as the equation 
(15): 
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When 𝑃𝑃𝑖𝑖𝑗𝑗 = 𝑎𝑎

2𝑏𝑏
, the profit defined by equation (14) is maximized and expressed in Equation(16).  

 

                                                                   𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚 = −𝐶𝐶𝑖𝑖𝑖𝑖 +
𝑎𝑎2θ𝑖𝑖𝑖𝑖
4𝑏𝑏

                                                    (16) 
 
Compare the highest profit it obtains to 𝐸𝐸(𝑈𝑈(𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖)))  =  0, 𝑋𝑋𝑖𝑖𝑖𝑖 =  0 to decide whether the air planner could decide 
to open this route. Let the maximized profit obtained from the quadratic equation above be denoted 𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚. The route 
with the highest profit will be the best choice among all possible ticket prices. Choose the situation that has been 
known the estimated highest profit made by the optimal price. Then the 𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚   is compared to 0. The expected profit 
of not opening the route can be evaluated in the following outcomes.  
 
Decision 1: indifferent 
 
When 𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚 =  0, equation 16 becomes equation 17.  
 

                                                               𝐶𝐶𝑖𝑖𝑖𝑖 =
𝑎𝑎2θ𝑖𝑖𝑖𝑖
4𝑏𝑏

                                                              (17) 
 

Hence if , the air planner will make an indifferent decision between opening or not opening the new route. 
Otherwise, the indifferent situation does not exist. 
 
Decision 2: open the routes 
 
When 𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚 >  0, the equation (16) for maximized profit becomes equation (18), and the planner decides to open the 
route.  

                                                               𝐶𝐶𝑖𝑖𝑖𝑖 <
𝑎𝑎2θ𝑖𝑖𝑖𝑖
4𝑏𝑏

                                                              (18) 
 
In this case, the air company could obtain the highest profit of all possible routes. Otherwise, the “open route" case 
does not exist. 
 

Decision 3: not open the routes 
 
When 𝜋𝜋𝑚𝑚𝑎𝑎𝑚𝑚 <  0, the equation (16) for maximized profit becomes equation (19), and the planner decides not to open 
the route.  

                                                               𝐶𝐶𝑖𝑖𝑖𝑖 <
𝑎𝑎2θ𝑖𝑖𝑖𝑖
4𝑏𝑏

                                                              (19) 
 
Since the air company will tend to make a loss on the new route even considering the most-profited route, the planner 
is likely to suggest not opening the route. Otherwise, the "not open the routes" situation does not exist. 
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Networked Model 
 
The baseline model above focuses on the simplest case that designs a route between 𝑛𝑛 =  2 locations and then makes 
the decision whether to open a route based on the comparison of expected profit. To explore what will happen if there 
are multiple locations in the network, we must assume that there are multiple pairs of departure and destination hubs 
in a network. 

The research will try to consider some natural constraints as follows. It wants to consider the maximum 
number of flights (air route) allowed to be put into use and the passenger capacity in the model. Let 𝐾𝐾 represent the 
maximum number of flights allowed by the planner. Denote N as the passenger capacity for the whole network. 

The research will start by analyzing the results obtained from the baseline model of the single pair, then apply 
the relevant results to explore the multiple pairs in the networks. Since the decision-maker is risk-neutral, it could 
directly apply the results developed in the baseline model. 

For multiple pairs case: Based on the model from the simplest case, the research develops the model from a 
single pair (𝑖𝑖, 𝑗𝑗) to every possible pair (𝑖𝑖, 𝑗𝑗)  ∈  [1, . . . ,𝑛𝑛]2 in the network. Let the assumptions made for the baseline 
model still work for this model with networks: risk neutral (𝛾𝛾 =  0), and demand have a linear negative relationship 
with price level (𝑁𝑁𝑖𝑖𝑖𝑖 =  𝑎𝑎 −  𝑏𝑏 ∗  𝑃𝑃𝑖𝑖𝑖𝑖). Assuming that in the network, the demand and price level of the different 
routes hold the same relationship (a and b work for all the routes in the network). 
 
From the profit equation of Case 1: 𝑋𝑋𝑖𝑖𝑖𝑖 =  0 (equation (1)). And from the profit equation of Case 2: 𝑋𝑋𝑖𝑖𝑖𝑖 =  1 (equation 
(4)). The Equation (20) to (22) shows how to compute the sum of the expected utility value: 
 
                            ΣE(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = ΣΣ𝐸𝐸(𝑈𝑈(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖 = 0�)) + Σ𝐸𝐸(𝑈𝑈(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�))             (20) 
 
                            ΣE(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = Σ�θ𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖� ∗ 𝑋𝑋𝑖𝑖𝑖𝑖                                        (21) 
 
                            ΣE(U(𝜋𝜋�𝑋𝑋𝑖𝑖𝑖𝑖�)) = Σ�θ𝑖𝑖𝑖𝑖 ∗ �𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖� ∗ 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖� ∗ 𝑋𝑋𝑖𝑖𝑖𝑖                        (22) 
 
Here, it examines two constraints: the maximum number of air routes allowed to be put into use K, and total fleet 
passenger capacity 𝑁𝑁. 
 
Constraint 1: the maximum number of routes allowed to be put into use 
 
                                                                       0 ≤  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝐾𝐾                                                           (23)                                 
 
 
Constraint 2: Passenger capacity 
 
                                                                       0 ≤  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑁𝑁                                                   (24)                                 
 
It has the assumption for the relationship between demand and price level (equation (11)). Hence, the research has: 
 
                                              0 ≤  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 ∗ �𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖  ≤ 𝑁𝑁                                                   (25)                                 
 
The research will build the model with multiple pairs of departure and destinations in a network in this part. Combining 
the constraints and functions above, it constructs the model for the full network on n hubs. Same as the simplest case, 
it assumes that the air planner chooses to open the routes to maximize profit. This leads to the following optimization 
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problems. 
 
In the case of the maximum flight constraint, it shown in the equation (26): 

                                                                                                     (26) 
 
 
If instead, the research imposes a maximum passenger capacity, it instead arrives at equation (27): 

                                                                                             (27) 
 
If the research imposes both constraints on the model, it has the equation (28): 

                                                                                                  (28) 
 
Proof of Optimization 
 
In this section, the research presents proof of the solution to the maximization optimization problems expressed in 
equation (26). Proof of equation (27) and equation (28) is beyond the scope of this research, and so the research does 
not provide further context on solving these problems. The optimization problem expressed in (26) is an integer prob-
lem, and therefore generally hard to solve efficiently. This section seeks to provide an explicit characterization of the 
optimal solution. This model considers the cost of setting up and operating the routes (𝐶𝐶𝑖𝑖𝑗𝑗) and the probability of 
success travel from i to j (𝜃𝜃𝑖𝑖𝑗𝑗) as fixed constants.  

For constraints, the study wants to mainly focus on the maximum number of air routes that are allowed to be 
put into use (K). So, it is: 

                                           (29) 
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Let 𝑀𝑀𝑖𝑖𝑖𝑖 =  𝜃𝜃𝑖𝑖𝑖𝑖 ∗ (𝑎𝑎 − 𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖) ∗ 𝑃𝑃𝑖𝑖𝑖𝑖  − 𝐶𝐶𝑖𝑖𝑖𝑖) 
Therefore: 

 
 

This is the same as: 

 
 
Then arrive at the constrained optimization problem in the networked setting, which is given by: 

                                                                                                           (30) 
 
 
Theorem 1: Define 𝑣𝑣 ∈  𝑅𝑅𝑛𝑛(𝑛𝑛−1) such that 𝑣𝑣𝑘𝑘 is the 𝑘𝑘th largest value in 𝑀𝑀. Then, it has 𝑣𝑣1 ≥  𝑣𝑣2 ≥ . . .≥  𝑣𝑣𝑛𝑛(𝑛𝑛−1).  
Construct 𝑝𝑝 ∈  {0,1}𝑛𝑛(𝑛𝑛−1)  similarly by ordering the elements of 𝑋𝑋 in the same way, such that 𝑝𝑝𝑘𝑘 corresponds to the 
route whose expected profit is 𝑣𝑣𝑘𝑘. Now, the optimization problem becomes: 

                                                                                                       (31) 
Let 𝑝𝑝∗ be the optimal value for this problem. If 𝑣𝑣𝑘𝑘 >  0 and 𝑣𝑣1 >  𝑣𝑣2 > . . . >  𝑣𝑣𝑛𝑛(𝑛𝑛−1) then 𝑝𝑝 ∗ 𝑘𝑘 =  1 if and only if 
𝑘𝑘 ≤  𝐾𝐾 and 𝑣𝑣𝑘𝑘 ≥  0. 
 
Proof: the research proves Theorem 1 by contradiction. Let 𝑝𝑝�  ≠  𝑝𝑝∗  be feasible for the problem (31). The research 
will show that 𝑝𝑝¯ cannot be optimal. 
 
First, introduce some notation. Let 𝑒𝑒𝑘𝑘 be the 𝑘𝑘th canonical basis vector, which is equal to 1 in the 𝑘𝑘th entry and 0 
elsewhere. 
 
The research will explore two cases in the proof. One is the case that Σ𝑘𝑘 𝑝𝑝𝑘𝑘���� =  𝐾𝐾, and another is the Σ𝑘𝑘 𝑝𝑝𝑘𝑘���� <  𝐾𝐾.Both 
cases originated from the constraints of the problem (28). 
 
Consider the case where Σ𝑘𝑘  𝑝𝑝𝑘𝑘���� =  𝐾𝐾, and the constraint holds with equality. In this case, there must exist ℓ,𝑚𝑚 ∈
[1, . . . ,𝑛𝑛(𝑛𝑛 − 1)] such that it has both0= 𝑝𝑝ℓ����  ≠  𝑝𝑝ℓ∗ = 1 and 1 = 𝑝𝑝𝑚𝑚����  ≠  𝑝𝑝𝑚𝑚∗ = 0. 
 
It can construct another feasible solution to the problem (28) given by 𝑝𝑝�  + 𝑒𝑒ℓ − 𝑒𝑒𝑚𝑚. This solution is feasible since it 
satisfies both constraints. The objective value of this new solution is given by 
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By the assumption on 𝑝𝑝∗, it knows that ℓ <  𝑚𝑚. Therefore, since 𝑣𝑣ℓ >  𝑣𝑣𝑚𝑚, the objective value of this new solution 
is larger, and  𝑝𝑝� cannot be optimal. 
 
Then consider the case for  Σ𝑘𝑘 𝑝𝑝𝑘𝑘���� <  𝐾𝐾. In this case, there exists ℓ ∈  [1, . . . ,𝐾𝐾], such that it has 0= 𝑝𝑝ℓ����  ≠  𝑝𝑝ℓ∗ = 1. 
It can set up a feasible solution to the problem (28) by  𝑝𝑝� + 𝑒𝑒ℓ. The objective value of this new solution is given by 

 
 
Recall the assumption that 𝑝𝑝𝑘𝑘∗  =  1 if and only if 𝑣𝑣𝑘𝑘 >  0 and 𝑘𝑘 ≤  𝐾𝐾. Since it knows that 0= 𝑝𝑝ℓ����  ≠  𝑝𝑝ℓ∗ = 1, hence, 
it has 𝑣𝑣ℓ >  0. Therefore, this new solution has a larger objective function, thus  𝑝𝑝� cannot be optimal. 
 
From above, the research proves that any  𝑝𝑝�  ≠  𝑝𝑝∗  cannot be optimal in both cases. Therefore, 𝑝𝑝∗ must itself be 
optimal. 

 

Discussion 
 
This research focuses on air transport network optimization. In the study, we make several assumptions to simulate 
the process of deciding to construct new air routes in a network for the air transport industry. We study the expected 
utility of profit under a linear demand function to build the baseline model and characterize the optimal solution. Then, 
from the baseline model, we develop an advanced model with a whole network. We explore the optimization results 
of the situation by constructing and analyzing the baseline model and the model with the network. We verify the result 
developed from the model to be the optimal result under the situation by mathematics analysis.  

Here, we provide some potential applications and research directions related to this study. The model devel-
oped is about a point-to-point network structure with two hubs on one route. But in the real world, the situation is 
much more complicated; demand may be stochastic. Consequently, we will discuss several complexities which could 
enhance the feasibility of the model to reality: passenger demand, flight connections, and temporal dynamics.  
In our model, we assume that the relationship between demand and price level is linear. However, the situation may 
be more complex. If the air transport experiences a shock, the parameter of the function may be unstable and change. 
Moreover, if the air industry suffers a sudden severe shock, the relationship will completely change. For instance, 
during the COVID-19, the demand for air transport promptly shrank: the number of passengers decreased by 60 per-
cent in 2020 [3]. The whole system was seriously affected. As a result, the assumption of linear demand function may 
not work in different situations. The relation- ship between demand and price level needs to present with a new ap-
proach considering the characteristics of the specific situation. Furthermore, due to the varied situation such as weather 
and policy, the demand of passengers may be stochastic. For example, there generally exists peak-season and off-
season in the air transport, which causes uncertainty on the demand [6]. Considering the random demand, we may 
need to apply different methods to improve the model and obtain the optimization results – perhaps applying average 
values or using numerical simulation.  

In the study, we consider the base case with two hubs on one route. However, in reality, sometimes because 
there is no direct flight connecting the departure and destination, passengers will choose to transfer from departure to 
a transit station then to the destination instead of traveling directly to the destination. Under this situation, the demand 
of the passenger who wants to travel on the route will be different, and the relationship between the demand and price 
level will be affected. In this case, the situation is different from our original model. For the demand of passengers, if 
there exists a transit station, they will have additional travel routes to arrive at the destination. As a consequence, the 
demand of passengers of the direct route from departure to the destination will usually decrease. Considering this, our 
model may have additional constraints and variables when we construct the optimization model. We could start from 
the simplest case to understand and analyze the model: there are three hubs in the network. In this case, we assume a 
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situation that we have a departure, a transit station, and a destination in our model. The air company already has two 
air routes from the departure to the transit station and from the station to the destination. There is not a direct route 
between departure and destination. However, there is still an existing demand for traveling directly from departure to 
destination. So the air planner wants to make a decision about whether the air company has to open the routes from 
departure to the destination. Under the assumption, there are connections among the three routes: the connection in 
the decision variable; the connection in the demand of passengers on the three fleeting routes.  

Similar to how we do not consider the limitations of passenger demand and flight connections, our model 
also does not incorporate temporal dynamics. In our research, the fleeting routes operating at different period will not 
be influ- enced by time-based events. For instance, the price level or the demand could be time-dependent, varying by 
time. Besides, the probability of the successful transmission could be influenced by the time effect: the probability of 
the next period may have a relationship with the probability of the last period. To in- volve the time effect in the model, 
we could apply some methods like dynamic programming to improve our model. Besides, the probability of a suc-
cessful flight can be varied in a time period. For instance, during the COVID-19 pan- demics, the probability of 
successful flight is highly correlated to the timely epidemic situation. If the pandemics break out or there is a huge 
number of infectious cases on the flight departing from the region, the air company may tend to fuse the flight from 
the departure hub due to the epidemic prevention concern and policy. In this case, the probability of a successful flight 
may be influenced by time.  

While the above considerations would greatly improve the value of research into air transport network design, 
this study provides a meaningful contribution towards guiding later experiments in this field. The model involves the 
parame- ters of the air transport route design, providing a method to develop the model. Besides, we apply the expec-
tation function to handle the uncertainty, which could apply to network questions with uncertainty. Additionally, the 
baseline model analyzes the simplest case of the fleeting route design between two hubs and the relationship among 
the parameters, including the demand and price level. Thus the model acts as the initiation to understand the route 
design. The baseline model also shows how the air planner makes the decision based on the optimal result of the 
model. Moreover, we build the networked model to simulate the situation in multiple pairs of hubs, thus being more 
applicable in reality. Through the construction of a theoretical network framework, we provide future experimenters 
with a theoretical point from which to begin their exami- nation of actual networks. In addition, we verify the optimal 
results we obtain from the networked model to be optimal by math analysis, which indicates that our optimization is 
established under the situation. Future research can use our theoretical model to simulate the air transport network 
design, understand the structure of the air network, and facilitate stronger practical implementations of air route net-
work design.  
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