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ABSTRACT 
 
Over the past decade, research in the field of Deep Learning has brought about novel improvements in image 
generation and feature learning; one such example being a Generative Adversarial Network. However, these 
improvements have been coupled with an increasing demand on mathematical literacy and previous knowledge in the 
field. Therefore, in this literature review, I seek to introduce Generative Adversarial Networks (GANs) to a broader 
audience by explaining their background and intuition at a more foundational level. I begin by discussing the 
mathematical background of this architecture, specifically topics in linear algebra and probability theory. I then 
proceed to introduce GANs in a more theoretical framework, along with some of the literature on GANs, including 
their architectural improvements and image-generation capabilities. Finally, I cover state-of-the-art image generation 
through style-based methods, as well as their implications on society. 
 

Introduction 
 
The purpose of this section is to give a brief introduction to the mathematics and intuition behind Generative 
Adversarial Networks (GANs). GANs, and Deep Learning Models as a whole, take from a variety of branches of 
mathematics, including probability theory, multivariable calculus, and linear algebra. Using both mathematics and 
computation, artificial intelligence (AI) researchers create algorithms which learn meaningful feature representation 
(patterns) about a dataset; GANs are one of these algorithms. 

What makes GANs unique in this regard is their ability to generate novel data samples through a two-player 
learning and discrimination process. This process facilitates the growth of a generator algorithm and leads to better 
data sample generation over time. Over the last decade, improvements in GANs have led to better training stability 
[1], better image generation capability [2], [3], and style-incorporated generation [4]. As a result of this research, 
computer image generation has seen great strides, so far as piercing mainstream audiences with AI generated artwork 
and open-source models. 

 
Probability Theory 
 
As its name suggests, the field of probability theory deals with variables that have a random chance of occurring. For 
example, a coin has a 50% chance of landing on heads and an equal chance of landing on tails. In this scenario, we 
can define the random variable "coin flip" as 𝑥𝑥. Moreover, let the instances (possibilities/events) of a random variable 
be 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … . . 𝑥𝑥𝑛𝑛. The probability of a specific event occurring will be denoted as 𝑃𝑃(𝑥𝑥 = 𝑥𝑥1), or in other words, 
the probability of 𝑥𝑥 taking on the value 𝑥𝑥1. In Deep Learning, random variables are usually image sample vectors, 
denoted by a boldfaced 𝒙𝒙. 

In cases where the variable 𝑥𝑥 can take on an infinitesimal number of values, i.e., a continuous variable, we 
model the variable using a probability density function (pdf), denoted by a 𝑝𝑝(𝑥𝑥) , with 𝑥𝑥  the variable being 
distributed. Since 𝑝𝑝(x) is continuous, we cannot analyze the probability of individual instances of 𝑥𝑥, rather, we 
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must integrate ∫𝑏𝑏𝑎𝑎 𝑝𝑝(x)  dx over a domain to find an overall probability of x taking on a value in said domain. 
When graphing probability distributions in two or more dimensions, we often parameterize the distribution 

using its mean 𝜇𝜇, the average value of the variable, and standard deviation 𝜎𝜎, the amount the variable deviates from 
the center on average. Using these two parameters, we can rewrite a probability distribution as 𝑝𝑝(𝑥𝑥; 𝜇𝜇,𝜎𝜎), i.e., the pdf 
of 𝑥𝑥 parameterized by 𝜇𝜇 and 𝜎𝜎. What does is mean for a distribution to be parameterized? In this scenario, our 
graph of 𝑝𝑝(𝑥𝑥) depends on the individual values of 𝜇𝜇 and 𝜎𝜎, we cannot properly understand 𝑝𝑝(𝑥𝑥) without the 
information of 𝜇𝜇 and 𝜎𝜎. Many deep learning models contain hundreds of thousands of individual parameters across 
an algorithms cycle [5], and optimizing these parameters is often our objective during computation. 

Theoretically, one may wish to compare two different PDFs coming from a distribution of data 𝑝𝑝(𝑥𝑥) and 
the distribution of the model 𝑞𝑞(𝑥𝑥). There are two prominent methods of doing so, the Kullback-Leibler Divergence 
and the Jensen-Shannon Divergence. The Kullback-Leibler Divergence between two distributions 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) 
is defined as: 

 
 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃 ∥ 𝑄𝑄) =   ∫∞−∞𝑝𝑝(𝑥𝑥)𝑙𝑙𝑜𝑜𝑔𝑔(𝑝𝑝(𝑥𝑥)

𝑞𝑞(𝑥𝑥)
)𝑑𝑑𝑥𝑥 (1) 

 
Algorithmically, there are a few issues with KL-divergence. For one, if 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) are dissimilar, the 

integral evaluates to 0, causing problems in optimization. Moreover, KL Divergence does not preserve symmetry, or 
in other words: 

 
 𝐷𝐷KL(𝑃𝑃 ∥ 𝑄𝑄)   ≠   𝐷𝐷KL(𝑄𝑄 ∥ 𝑃𝑃) (2) 

 
To circumvent these issues, researchers may implement the Jensen-Shannon Divergence. One can define the 

Jensen Shannon Divergence between two probability distributions 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) as: 
 
 𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃 ∥ 𝑄𝑄)   ≠   1

2
𝐷𝐷KL(𝑃𝑃 ∥ 𝑀𝑀) +   1

2
𝐷𝐷KL(𝑄𝑄 ∥ 𝑀𝑀) (3)    

 
 Where: 
 
 𝑀𝑀 =   1

2
(𝑃𝑃 + 𝑄𝑄) 

 
When 𝐽𝐽𝐽𝐽𝐷𝐷(𝑃𝑃 ∥ 𝑄𝑄) = 0, it is assumed that 𝑝𝑝(𝑥𝑥) = 𝑞𝑞(𝑥𝑥), since it will zero-out the integral. As we will see later, 
GANs use an algorithm to minimize the Jensen-Shannon distance between 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥), or in a more practical 
sense, they optimize the model’s output to be similar to the distribution of data. 

 
Linear Algebra 
 
The field of linear algebra is crucial for understanding machine learning. Linear algebra allows computer scientists to 
analyze relationships between variables by represent numbers, images, and other forms of complex data structures as 
matrices. 

Simply, a matrix can be thought of as an array of numbers. The columns of a matrix refer to individual 
vectors, whereas its rows denote an arbitrary number of individual vectors. (Due to this fact, matrices are often referred 
to as vectors, specifically image vectors, in Deep Learning literature.) A matrix in m dimensions (rows) with n 
vectors (columns) is represented as  𝐀𝐀 belonging to ℝm  ×n. Its matrix components 𝑎𝑎𝑖𝑖𝑖𝑖  belong to the 𝑖𝑖th row and 
𝑗𝑗th column and are usually scalar values, example: 
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 �
𝑎𝑎1,1 𝑎𝑎1,2 . . .
𝑎𝑎2,1 𝑎𝑎2,2 . . .
. . . . . . 𝑎𝑎𝑖𝑖,𝑖𝑖

�. (4) 

 
For a more intuitive example, let us look at how to represent an image as a matrix. A square image of 256 × 

256 × 3 has exactly 256 rows, 256 columns, and 3 color channels. Each pixel value 𝑎𝑎𝑖𝑖𝑖𝑖   in the matrix represents the 
color depth in either red, blue, and green. When we imprint these matrices onto each other, we retrieve our original 
image. 

 

Neural Networks and Deep Learning 
 
Deep learning and artificial neural networks (ANNs) have been intertwined since the inception of deep learning [6]. 
ANNs allow for the extraction of feature representations, thereby allowing for the "deep learning" of different data 
structures, such as images and words. This section aims to cover the architecture of ANNs, specifically how they 
process, modify, and learn data. 
 
Artificial Neural Networks 
 
Artificial Neural Networks (ANNs) in their most simple form are algorithms designed based on the neurons in our 
mind [7]. ANNs take input as information and learn patterns (features) by processing the information in “hidden” 
layers. The "hidden" layers in an ANN are made up of connected neurons, which each process information before 
sending it to other neurons. 

Each neuron connection contains weight parameter. This weight parameter can be interpreted as how much 
change a neuron incurs on the data; high weight is associated with high change, and low weight value is associated 
with a low change in the data. This weight is multiplied with the neuron output before being transferred to the next 
neuron. The ability to find near-optimal weights makes the algorithm very strong, and it is one of the main goals in 
neural network optimization.   

However, before information is sent to the next neuron, both the neuron output and weight must go through 
an activation function. The activation function determines whether information should be sent to the next neuron. A 
visualization of this process can be seen in figure 1. 

The neurons themselves store probability values between their expected output and actual output from the 
activation function; worse predictions correlate with more error. The neuron predictions contribute to an “loss 
function” (or error function), which can be defined for the overall algorithm.  

The loss function for an ANN is an overall measure of its ability to learn from the data; generally, higher loss 
correlates with worse performance and learning. The loss function serves as a guide on how to adjust our weights 
and/or other parameters, and is typically a non-convex optimization task. There are several methods for weight 
optimization, but one of the most wideley used is stochastic gradient descent (SGD). 

To better understand gradient descent, imagine a mountain range with many different peaks and hills. 
Different points in this mountain range correlate to different weight values; however, for us to have optimal weight 
values, we must find the minimum altitude in this mountain range. One possible method would be to simply move 
down the hill: which is akin to "descending" the "gradient" [8]. 
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Figure 1. The Rosenblatt Perceptron [7]. Each neuron in a neural network consists of 3 components: the inputs, the 
weights, and an activation function. The inputs to a neuron consist of multi-dimensional vector information. These 
vectors are multiplied by their respective weight value which determines their overall impact on the dataset. Finally, 
the sum of the inputs and weights goes through an activation function which determines if the data should be sent to 
the next neuron or not. A "0" signals a "do not send," whereas a "1" signals "send."  
 
Convolutional Neural Networks 
 
Early on in their development, ANNs were more abstract in their architecture, and were unable to tackle issues such 
as image processing. However, since the 21st century, newer architectures have enabled neural networks to excel at 
image processing tasks, specifically, Convolutional Neural Networks (CNNs) [9]. 

In the task of image processing, one vital conern is the ability to transform an input image to a vector that is 
understandable by a neural network. To solve this task, CNNs use convolutional kernels and pooling layers before a 
network can learn from an image (figure 2). Firstly, the convolutional layer take a specific matrix, known as a filter, 
and performs a dot product over the span of an entire image. This results in only specific parts of an image correlating 
with the filter’s pattern appearing. The resulting image is then transferred to a pooling layer, which downsizes the 
image further with different operations. For example, you may take a 2x2 matrix of pixels, and downsize by choosing 
the highest value of pixel, or average pixel value; this is known as "max pooling" and "average pooling" respectively. 

After the convolutional and pooling layers have been performed, the feed-forward neural network recieves a 
“summarized” version of an image which therby allows it to learn underlying patterns in the image. The network tends 
to learn more and more patterns the deeper the network layer we are in. For instance, edge detection may come before 
the detection of objects and small feature attributes, such as strands of hair. In the analysis of CNNs, it is common to 
denote the feature representation of images as a latent variable 𝒛𝒛. This variable is referred to 
as "latent" because us as the designer do not have a priori knowledge of it. 
 

 
Figure 2. Structure of convolutional neural networks (CNNs). The basic architecture of a CNN includes a 
convolutional layer, a pooling layer, and a fully-connected neural network (FCN). In this example, we see a portion 
of a 3x3 image go though this process. The convolutional layer and pooling layer repeat for an arbitrary amount of 
times before a vector-representation of an image is ready to be processed in the ANN. 
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Generative Models 
 
Before introducing GANs directly, it is worth going over the broader field of models which GANs belong to: 
generative models. The goal of generative modeling is to optimize a model 𝑝𝑝model(𝒙𝒙; 𝜃𝜃) trained on a set of data 𝒙𝒙 
and parameterized by 𝜃𝜃 to produce outputs closest to the 𝑝𝑝data(𝒙𝒙) distribution; or in other words, to minimize: 

 
 min 

𝜃𝜃
𝐷𝐷KL(𝑝𝑝data(𝒙𝒙) ∥ 𝑝𝑝model(𝒙𝒙; 𝜃𝜃))   (5)  

 
When the 𝜃𝜃 parameter is optimized, the output of our model is 𝜖𝜖 close to 𝑝𝑝data(𝒙𝒙). If our data distribution 

were a collection of cat images, for instance, we could construct and train a model to produce cat images that look 
similar to the data. Depending on the model we are analyzing, the 𝜃𝜃 parameter may take on different roles; in a 
neural network 𝜃𝜃 corresponds to the network weights (as a whole) [10]. In reality, data sets can often be incredibly 
difficult to approximate by simple differentiation and integration, therefore, other methods must be devised to create 
probability distributions; this is one of the main challenges researchers face in generative modeling [10]. 

 

Generative Adversarial Networks 
 
Previously, I have introduced fundamental concepts in probability theory and linear algebra, as well as the architecture 
behind ANNs and CNNs; an in-depth knowledge of GANs requires a combination of knowledge in these aspects. The 
following description of GANs is mostly theoretical, as a description of a full implementation is beyond the scope of 
this paper. 

The novel contribution of GANs is a two-player architecture between a generator CNN 𝐆𝐆  and a 
discriminator CNN 𝐃𝐃. One common analogy used to describe these networks is the game between an artwork-
counterfeiter and a detective [11]. The goal of the counterfeiter is to produce artwork that is similar to a real piece, 
whereas the detective must identify the counterfeiter’s work as being either real or fake. Much like the detective, the 
discriminator is trained on a real dataset and learns their patterns prior to analyzing the generator’s work. Similarly, 
the generator begins by producing white noise images from a standard gaussian (images with no information, akin to 
static noise); this is akin to the counterfeiter attempting to replicate artwork. The images produced by the generator 
are then fed to the discriminator, which outputs a scalar probability of the image being real (figure 3). 

For a more mathematical description, let 𝐗𝐗 ∈   ℝm×n be the set of all images with dimensionality m × n, 
forming a distribution of images 𝑝𝑝data(𝒙𝒙). This distribution is used to form the discriminator portion of a GAN, 
defined as being 𝐷𝐷(𝒙𝒙; 𝜃𝜃d). Moreover, let the set of all latent variables be 𝐙𝐙 ∈   ℝm×n  of dimensionality m × n 
belonging to a gaussian white-noise distribution 𝑝𝑝𝒛𝒛(𝒛𝒛). This distribution is used to form the generator 𝐺𝐺�𝒛𝒛;𝜃𝜃g�, 
which samples from the gaussian. Altogether, the minimax function can be defined as: 

 
                   min

                           𝐺𝐺
 max 

𝐷𝐷
𝑉𝑉(𝐺𝐺, 𝐷𝐷)  =   𝔼𝔼𝒙𝒙∼𝑝𝑝data(𝒙𝒙)�ln�𝐷𝐷(𝒙𝒙)�� +  𝔼𝔼𝒛𝒛∼𝑝𝑝𝐳𝐳(𝒛𝒛)�ln(1 − 𝐷𝐷�𝐺𝐺(𝒛𝒛)�)�.  

  
 (6) 

 
To better analyze the objective function described above, let us separate the discriminator and the generator. 

The first portion of the objective function, 𝔼𝔼𝒙𝒙∼𝑝𝑝data(𝒙𝒙)[ln(𝐷𝐷(𝒙𝒙))], tells us that the discriminator takes an input of real 
images 𝒙𝒙 ∼ 𝑝𝑝data(𝒙𝒙) and seeks to maximize 𝐷𝐷(𝒙𝒙),  the probability that the images are real. In the second portion 
of the objective function, 𝔼𝔼𝒛𝒛∼𝑝𝑝𝐳𝐳(𝒛𝒛)�ln(1 − 𝐷𝐷�𝐺𝐺(𝒛𝒛)�)�   , we see that minimizing 𝐺𝐺(𝒛𝒛)  is akin to fooling the 
discriminator, since this will lead to 𝐷𝐷(𝒙𝒙) approaching 0. 

This description was quite technical, so it is worth taking a step back and analyzing how a computer achieves 
this process. The authors of the original GAN paper [12] used a stochastic gradient descent algorithm for both the 
generator and discriminator. Essentially, the discriminator is given a set of images from the generator and the data 
pool, and trained to minimize equation 6. After one training cycle, the weights of the discriminator would be updated. 
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Similarly, the generator would take a sample of latent vectors from white noise images and generate an ouput before 
having its weights updated. The key to understanding this process is that the decision of the discriminator affects the 
generator’s weights, forcing it to improve, i.e. this process forces the generator to improve its image generation until 
𝑝𝑝g = 𝑝𝑝data(𝒙𝒙) [10]. 

 
 

Figure 3. GAN Architecture. A basic GAN architecture consists of a generator and a discriminator which play a 
minimax game [12]. The generator samples images from a distribution of noise and modifies them, thereby producing 
a new image. The discriminator is trained on a set of real images, then, it receives the generator’s output and must 
identify the image as being either real or fake with a probability value. Through backpropagation, the updating of 
neural network weights in a front-to-back order, the output of the discriminator influences how the generator modifies 
images. 
 
Deep Convolutional GANs 
 
Shortly after the introduction of GANs, their generative capabilities were explored and improved through a variety of 
research papers. Deep Convolutional GAN (DCGAN) [2], one of the first novel improvements, introduced three key 
features: replacing the discriminator’s pooling layer with convolutional strides, using fractional-convolutions in the 
generator, and using batch normalization in both networks [13]. 

Although these architectural improvements may seem overwhelming, they are in fact a simplification of the 
original GAN framework. More specifically, the strided convolutions used for the discriminator are simply the same 
stride operation performed in figure 2. Moreover, fractional-strided convolutions add padding to the original input 
image, allowing for the dot product output to preserve dimensionality. 

We previously learned that when data is processed by nodes in a neural network, its weights are shifted by 
gradient descent. One caveat to this process is that the nodes in a network do not automatically reset after processing 
data, causing future data to be processed incorrectly. This process is named "internal covariate shift." Batch 
normalization helps to prevent internal covariate shift by normalizing the inputs at each stage of the network by 
resetting the variance and mean, leading to faster processing and more stabilized training. 

 
Conditional Image Generation 
 
In the task of image generation, one may wish to generate images belonging to certain categories. For instance, a 
classical GAN trained on a set of handwritten-digits (MNIST) has no method of controlling the generation of specific 
digits. To enable conditional image generation, the discriminator and generator of a GAN can be trained on encoded-
image-vectors to learn categorical image generation. In other words, we can embed the training data of the generator 
and discriminator with certain image labels. As a result, the generator learns to generate images of each category it is 
trained on [14]. 
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There are a multitude of advantages regarding conditional image generation. For one, when obtaining images 
from a generator, the input of a class label allows for the generation of a specific category of images. This becomes 
important when GANs are trained on incredibly large datasets with hundreds of categories, such as ImageNet. A 
classical GAN without image labels has no way to distinguish labels within a dataset, but a conditional GAN can learn 
each and every category because the generator and discriminator are conditioned on every class label. An example of 
conditional GAN generation can be seen in figure 4, a collection of categorically generated images using BigGAN 
[3]. 
 

 
 

Figure 4. A collection of images generated by BigGAN [3]. BigGAN is trained on a large image dataset, specifically 
ImageNet [15], and is capable of conditional image generation. The examples here include the categories of wardrobe, 
radio, beer bottle, Yorkshire terrier, castle, and coffee mug respectively. These examples show the ability of GANs to 
learn and reconstruct feature representations. Images generated via [16]. 

 

GANs and Artwork 
 
Neural Style Transfer 
 
Users of social media sites, such as Instagram and Snapchat, are well familiar with "filters" that can alter one’s 
appearance almost instantaneously. The technology used to make these filters largely originate from style-transfer, a 
way to mix the style and content of an image using CNNs [17]. 

We previously learned that a CNN processes images via a convolutional layer, pooling layer, and fully-
connected neural-network. To go more in depth, when a processed image is passed through the fully-connected-
network (FCN) stage, it is possible to retrieve certain "filter responses" triggered by the image. These filter responses 
show us how the FCN is learning features in the data. But more importantly, in style-transfer, filter responses are used 
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to store image information about the "content" of an image; this content stores important information such as position, 
outlines, placement, etc. Using this logic, the authors of style-transfer proposed sending a white-noise image to adapt 
the filter-responses of a previously-processed image. This allows the white-noise image to retain the content 
information of a previous image. As an example, if I were to send an RBG image of a cat through a CNN, I could later 
pass a white-noise image to adapt the features found in that cat, such as its fur, eyes, etc. Once the content of an image 
has been extracted, the "style" of a different image can be implanted, an example can be seen in figure 5.   

Similarly, to learn the content of an image, an image’s style is learned by passing an image and collecting its 
filter responses in the FCN portion of the CNN. However, instead of directly implanting the filter responses onto a 
white noise image, a gram matrix of filter responses is first learned. A mathematical description of the gram matrix is 
beyond the scope of this paper, however, it is important to know that this matrix stores information about the 
relationship between feature responses between layers in the FCN. 

Predictably, once the gram matrix of an image has been extracted, a white noise image is passed. Gradient 
descent is then performed in order to match the gram matrix of the white-noise image to that of the previously 
processed image. Notably, a single FCN can store both the content of one image and the style of another image. A 
single loss function can be computed on a white-noise image, allowing the white-noise image to capture both content 
and style [17]. 

One of the problems encountered with style transfer is that it was not possible to arbitrarily apply different 
styles, meaning that applying a different style would mean retraining the network. In order to solve this issue, Huang 
and Belongie 2017 introduce Adaptive Instance Normalization, (AdaIN), which normalizes the content and style 
inputs, and allows for different style inputs to be added during training [18]. The development of AdaIN was key in 
the development of the style-based generator [4]. 

 

 
 

Figure 5. The Style Transfer Process. In this example, the content image (Mount Ranier) is combined with the style 
image (The Starry Night by Vincent Van Gogh [19]) to produce an image of Mount Ranier in the style of The Starry 
Night [19]. Images generated via [20]. 

 
Style-Based Generation 
 
So far, we have learned about the generative capabilities of GANs, and the artistic capability of Style Transfer. Karras 
et al. 2019 combine these two algorithms by creating a GAN which is capable of generating images with style. 
Moreover, they show that StyleGAN produces images of a much higher quality and more diverse images overall.  

The architecture behind StyleGAN differs from your standard GAN, in that there are actually two separate 
neural networks for the generator. One of the neural networks in the generator learns the style of images, whereas the 
other neural network is a typical generator. The neural network which learns the styles of images is referred to as a 
"mapping network." Its input, the latent variable 𝒛𝒛 from a set of images, is mapped to the "style-control" variable 
𝒘𝒘. The 𝒘𝒘 variable will later be used in the generator network. The generation process begins with a classical 
generator upsampling a 4x4x512 image via convolutional layers, or in other words, enlarging an image through a 
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CNN. This image then has noise added to it in order to introduce "stochastic variation." Finally, the style control 
variable 𝒘𝒘 applies a specific style to the image. This cycle continues twice per image dimension (4x4, 8x8, 16x16, 
etc), with different styles being added via AdaIN. 

Each aspect in StyleGAN’s generator contributes to its diversity and quality of images, and I will go over 
their respective benefits and reasoning here. For one, what is the purpose of the separate mapping network?" The 
neural network which maps the latent variable 𝒛𝒛 from a set of images to 𝒘𝒘 is a fully connected network whose 
only purpose is to learn the style of its input images, and then apply these styles, 𝒘𝒘, to the generator. Importantly, 𝒘𝒘 
allows for "style mixing" of images created by the other generator. In each convolutional cycle,  𝒘𝒘 is added to the 
network; this is done before and after convolutional upsampling, allowing for the "mixing" of styles (and more 
diversity overall). Finally, gaussian noise is added after convolutional upsampling in order to make small changes in 
images (stochastic variation). This leads to greater image diversities on a micro-level [4]. 

 

Related Work 
 
Up until this point, we have seen a mathematical formulation of GANs, improvements to its architecture, and artistic 
applications. In this section, we will explore other generative models and compare their formulation to GANs, 
specifically, Boltzmann Machines, Variational Autoencoders, and most recently, Diffusion models. 
 
Restricted Boltzmann Machines 
 
Restricted Boltzmann Machines (RBMs) are one of the earliest examples of generative models. Created well before 
the invention of convolutional neural networks, RBMs do not have the ability to generate images and pixels, but rather, 
they are able to estimate a probability distribution. RBMs can be described as a bipartite Markov Random Field of 
neurons belonging to two classes: hidden units and visible units. In other words, a RBM is a graph-based model that 
preserves the Markov property, that is, the variable being modeled is independent locally, globally, and conditionally. 
This model is described as "restricted" because there is no connection between neurons within each of the respective 
categories [21]. 

 
Variational Autoencoders 
 
Unlike GANs, variational autoencoders do not use a generative-discriminative process. Rather, they directly learn 
patterns in data through learning reconstructions. There are some instances where this can be quite useful. For instance, 
in the task of inpainting a computer is given an image with a section blacked-out, the computer then attempts to 
reconstruct the full image. 

Firstly, standard Autoencoders work by reducing the dimensions of an input image from training data to 
latent space, learning a relationship between the data and the latent variable, and then projecting back into image 
space. These are done in three sections respectively: the encoder, the latent representation, and the decoder. 
Mathematically, this operation is performed by principal component analysis (PCA). Given an image, the algorithm 
takes the eigenvalues of the image’s covariance matrix to find the best linear subspace of the image, and then analyzes 
the relationship between variables in that linear subspace. In simpler terms, an autoencoder finds patterns in the data 
by eliminating variables in an image which do not correlate to a meaningful feature representation. Autoencoders are 
solely trained on this task, however, the lack of regularization and complexity gives the model too much freedom, 
causing overfitting. 

Variational autoencoders improve upon this framework by replacing the encoder portion of the network with 
a ”latent distribution.” Rather than an input image having its latent variable reconstructed, the latent features contribute 
to a distribution of latent features. Then, a single latent variable is sampled by the network and reconstructed. The 
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addition of a probability distribution allows for the construction of a KL-divergence based loss function, which is then 
trained via a neural-network model [22]. 

 
Diffusion Models 
 
Recent work in generative modeling has introduced the concept of “diffusion-based models” [23]. Diffusion models 
work by adding gaussian noise to an image and learning a reversible process. More specifically, noise is added 
stochastically through a markov chain process to an image at each timestep, and a reverse model must learn a function 
producing this noise. Therefore, a loss function can be defined as being the mean squared-error between the function 
prediction noise and the noise applied to the image. Diffusion models derive their name from physics, where they act 
as a partial-differential-equation for predicting the random movement of particles. In the domain of images, the 
gaussian noise is analogous the random movement of a particle. Once a neural network has properly learned to reverse 
this process, it can be trained to produce images. Dhariwal and Nichol 2021 achieved comparable results to state-of-
the-art GAN architecture on a variety of metrics, specifically ImageNet [15] and LSUN [24]. 

 

Conclusion 
 
In this paper, I introduced the topic of GANs through a mathematical lens by covering foundational concepts in 
probability theory, linear algebra, and machine learning. A GAN architecture can be described as a model which 
combines aspects from these fields. More specifically, we have seen that GANs learn image generation through a 
generator neural network which implicitly minimizes the probability density between the set of real and fake images, 
which are represented as matrices. In addition, we have seen that GANs are able to learn patterns in large image 
datasets and create novel images. By covering GAN architecture from a more foundational and mathematical level, 
we can better understand their novelty, capabilities, and structure. 

However, GANs are not without their faults. In their current state, GANs require an incredible amount of 
computing power and time to achieve results. As a consequence, environmentalists and engineers alike have posed 
questions regarding the environmental impact of training large machine learning algorithms [25], [26]. In the future, 
GANs and other generative models could potentially generate images from smaller batches of data, and require much 
less computational power, helping both the environment and the machine learning practitioner. 

Nevertheless, the potential of generative modeling and AI art cannot be understated. In the coming decades, 
AI generated art trained on many different styles may be competitive with human creativity, potentially displacing 
artists and other creators. Consequently, this raises some legal questions regarding the ownership of AI art, as the art 
has no single human creator. Legal and ethical challenges, such as these, must be tackled by our generation in the 
near future, and understanding the way these algorithms function is critical to solving these dilemmas.  
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