
INTEGRAL mission - Automation of Transponder
Swaps Scheduling and Schedule Validation

Václav Pavlíček1 and Stefano De Padova2#

1Imperial College London, United Kingdom
2The European Space Agency, Germany
#Advisor

ABSTRACT

Human-made satellites allow us to broaden the knowledge of the world by discovering new stars, and exoplanets,
observing Earth, performing X-ray measurements and more. All satellites need to be controlled from Earth by the
Flight Control Team (FCT) consisting of experts from a wide range of fields. The satellite INTEGRAL is controlled
from the astronomy control room in the European Space Operations Centre (ESOC) together with XMM-Newton and
Gaia. Automation allows a single person to control three spacecrafts simultaneously and helps to reduce operational
costs. This paper describes the automation of transponder swaps scheduling and mission schedule validation using
tools developed in the programming language Python. Both tools were carefully tested in the defined verification
process and marked as ready to be used. The developed tools allow faster mission planning for the INTEGRAL satel-
lite thus saving the human resources of the FCT.

Introduction

The INTEGRAL (INTErnational Gamma Ray Astrophysics Laboratory) satellite was successfully launched from Bai-
konur in Kazakhstan on 17 October 2002 at 04:41:00 (UTC) by the PROTON rocket [1]. The initial operational du-
ration was set to 5 years with a possible extension period of 2 years. Due to the mission's success and scientific returns,
the mission duration was extended, and the satellite is still operational in 2022. The long operational duration, and
near-real-time design of the mission requiring 24/7 operation with significant manual work from the spacecraft con-
troller, raise many challenges. To save costs on spacecraft operations, the flight control teams of XMM-Newton and
INTEGRAL were merged in 2008 [2]. In 2018, the spacecraft controller in the Dedicated Control Room (DCR) for
the astronomy mission became also responsible for controlling the Gaia satellite [3]. Both of these merges suggest a
need to automate as many processes as possible to allow a single person to control all three spacecrafts. In the future,
there is a plan to control EUCLID from the astronomy DCR as well leading to further automation. This project aims
to automate processes for the INTEGRAL satellite. The first part involved the development of a transponder swap
time insertion tool that would optimise transponder swap times for minimal frequency of swaps and impact on the
scheduled commanding activities. The second part involved automating the timeline schedule validation for the IN-
TEGRAL satellite.

Mission Operations and Planning

The INTEGRAL Ground Segment is split into operational and scientific parts. The INTEGRAL Mission Operations
Centre (MOC) is located at ESOC in Darmstadt (Germany) and INTEGRAL Science Operations Centre (ISOC) is
located at ESAC in Madrid (Spain) as well as INTEGRAL Science Data Centre (ISDC) at the University Geneva,
Switzerland [4]. Figure 1 shows the diagram of the mission planning process that mainly consists of five steps. Firstly,

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 1

the Planning Skeleton File (PSF) containing times of orbital events such as eclipses and ground station visibility is
generated by Flight Dynamics System (FDS) at the MOC. Then the ISOC inserts Pointing Requests (PREQ) i.e. the
desired attitudes for targets/sources to be observed and instrument configuration parameters, based on the proposals
of the scientific community, resulting in the Planned Observation Sequence (POS) file. The POS file is processed by
Flight Dynamics System (FDS) with all necessary engineering and attitude control requests creating an Enhanced POS
(EPOS) file [5]. The next step includes transponder swap scheduling followed by the execution of Mission Planning
checks. Finally, the MOC Mission Planning System (MPS) translates the ISOC and FD requests into the Spacecraft
Commands and command parameter values to perform the requested observations, creating the "Timeline". The com-
mands from the Timeline are sent to the spacecraft via the Mission Control System (MCS).

Figure 1. Mission planning for INTEGRAL

Transponder Swap Scheduling

As the spacecraft shown in figure 1a performs its observations, it is not always possible to communicate with the
spacecraft using only a single antenna throughout the entire revolution due to the attitude of the spacecraft. Therefore,
the spacecraft was mounted with two antennas as figure 1b shows. One antenna (LGA1) is located on the Sun side
(0°) of the spacecraft with a 25° tilt from the Z-Y plane and the other antenna (LGA2) is located on the anti-Sun side
(180°) of the spacecraft with a -20° tilt.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 2

Figure 2. CAD drawings of the INTEGRAL satellite from the manual – overview in figure 2a and side view in figure
2b.

Figure 3a shows the details of the Radio Frequency Distribution Network (RFDN) subsystem that consists of two
antennas, two electromechanical switches and two transponders. As figure 3b suggests, the electromechanical switches
have two possible configurations - direct and cross. Before the RFDN failure in September 2021, these electrome-
chanical switches were used to swap between the two antennas and allowed the same transponder to be used. This
was done by sending a command, triggering the switch of antennas within a few seconds. After the RFDN failure and
problems with the electromechanical switches, a different approach to swap between satellite antennas was required.
Based on suggestions from industrial partners and experience with XMM RF failure [6], it was decided to swap be-
tween transponders with each antenna being hardwired to a different transponder. The swap is performed by turning
off the source transponder and turning on the destination one when a change in geometrical visibility occurs. Before
the RFDN anomaly, each of the transponders experienced around 1,000 ON/OFF cycles from the qualified 25000
power cycles. To maximise the lifetime of transponders, the requirement to minimize the number of swaps was set for
the algorithm.

Figure 3. Diagram of the RFDN subsystem shown in figure 3a and the configuration of RFDN switches in figure 3b.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 3

The antenna can be used if the angle between the antenna and the ground station is below the threshold of 100° for an
altitude ≥ 60,000 km and 110° for an altitude < 60,000 km. The equation 1 shows how to calculate the angle for
antenna 1 (LGA1), where Θ is pitch (rotation around y-axis), Φ is yaw (rotation around z-axis) and Ψ is roll (rotation
around x-axis). The formula neglects the centre of rotation of the satellite and the angle is calculated between the
ground station and Z-Y plane of the satellite. This simplification can be made because the altitude is many times
greater than the distance between the antenna and the centre of mass. Similarly, the angle for antenna 2 (LGA2) can
be calculated using equation 2. The swap between the transponders can be performed when both antenna angles are
within the range from 80° to 100° for an altitude ≥ 60,000 km or if altitude < 60,000 km from 70° to 110° otherwise.

Equation 1: Calculation of the angle for antenna 1 (LGA1):

𝐿𝐿𝐿𝐿𝐿𝐿1𝐺𝐺𝐺𝐺 = θ + 25 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(φ) + ψ ∗ 𝑐𝑐𝑠𝑠𝑠𝑠(θ)

Equation 2: Calculation of the angle for antenna 1 (LGA1):

𝐿𝐿𝐿𝐿𝐿𝐿2𝐺𝐺𝐺𝐺 = 180 − θ − 20 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(φ) −ψ ∗ 𝑐𝑐𝑠𝑠𝑠𝑠(θ)

Figure 4 shows angles calculated for the fourth version of revolution no. 2541. At the beginning of the revolution,
antenna 2 is above the specified threshold represented by the upper green dashed line, therefore only antenna 1 can be
used. However, the angle of antenna 1 reaches the upper threshold around 2022-08-24T14:55:42, resulting in a need
to conduct transponder swap. The swap can be scheduled when both antenna angles are within the region shown by
green dashed lines and into window with no commands for at least 10 minutes. For this particular case, the swap has
to be scheduled between 2022-08-24T14:06:49 and 2022-08-24T14:55:42. After that, the antenna 2 can be used for
the rest of the revolution. The grey curve represents the altitude of the spacecraft and if it is below 60000 km, the swap
range 70° to 110° can be used, otherwise, the 80° to 100° range is used.

Figure 4. Antenna angles for version 4 of revolution 2541.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 4

Implementation

The FD system suggests the start and end of possible intervals for transponder swaps, however, this system is too
conservative and always uses lower limits (80° lower threshold and 100° upper threshold). This leads to extra swaps
resulting in an unnecessary amount of transponder ON/OFF cycles. A new approach to calculate the smallest amount
of swaps was developed and is described by the following algorithm:

load TC coverage intervals from EPO (timeline schedule)
filter attitude records from ESM (orbit parameters) based on TC intervals
calculate angles for both antennas
find time intervals when each antenna is above the threshold
find time intervals when antenna angles are within the overlapping region
if LGA1 and LGA2 can be used

calculate swaps for each antenna if it was used at the beginning
use antenna at the beginning with fewer swaps
if antenna at the end of the previous revolution is not the same as the antenna with fewer swaps

insert swap between revolutions
end if

else if LGA1 can be used and LGA2 cannot be used
calculate and use swaps for LGA1
if antenna at the end of the previous revolution is LGA2

insert swap between revolutions
end if

else if LGA1 cannot be used and LGA2 can be used
calculate and use swaps for LGA2
if antenna at the end of the previous revolution is LGA1

insert swap between revolutions
end if

end if
generate plot and save the transponder used at the end of the revolution

Figure 5 shows the graphical output of the tool for revolution 2547, version 08. As the plot suggests, only antenna 1
can be used at the beginning of the revolution. This means that swap between revolutions 2546 and 2547 had to be
scheduled because at the end of the previous revolution, antenna 2 was used. The chart also shows that three swaps
were inserted in the revolution 2547. The first swap was scheduled at 2022-09-09T13:14:36Z with approximately
90-minute window. The second swap at 2022-09-10T16:21:52Z had gap only 5 minutes between commands, and
therefore, the mission planner would have to reschedule some commands to increase the window duration. Lastly, the
third swap was scheduled at 2022-09-11T16:06:56Z with almost 60-minute gap.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 5

Figure 5. Transponder swap scheduled for revolution 2547, version 08.

Development process, verification and validation

Python was chosen to implement the tool due to its capability to run on multiple operating systems, library availability
and development efficiency arising from its dynamic type system and its familiarity within the FCT. Firstly, the de-
velopment process involved the high-level design of the algorithm by writing down its major steps. After the chosen
approach was approved by the FCT, the implementation stage started. It involved heavy use of test-driven develop-
ment (TDD). According to [7], the TDD is a development technique where test cases are written first, followed by the
implementation code. By using the TDD approach, many test cases were created allowing instant feedback when a
part of the code was updated. TDD allowed the setting of small development milestones and also an option to quickly
verify the performance of all functions during the development. After the development and verification stages were
finished, the validation process followed.

The validation process involved a comparison of the algorithm's output with manually scheduled swaps.
Table 1. Transponder swap scheduling validation.shows a couple of lines of the validation table. The first criterion of
the validation process involved checking that the number of swaps determined by the algorithm is less than or equal
to the number of swaps suggested by the manual approach. During the second step, it was checked whether the largest
suggested gap can be used. If that was the case, the revolution test run was considered a "Success". As the validation
table shows, the algorithm suggests smaller or equal number of swaps for most of the cases. For revolution 2543_02,
the algorithm uses smaller number of swaps, however, for revolution 2547_08 it suggests more swap. The close in-
vestigation showed that the manual approach ignored the fact that antenna 1 is above specified threshold at the begin-
ning of the revolution. The designed algorithm is in this case more conservative and even for this case the requirement
was not relaxed.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 6

Table 1. Transponder swap scheduling validation.

Revolution

Number of
swaps

suggested
manually

Number
of swaps sug-
gested by the

algorithm

All largest
gaps can be

used
Status Comment

2541_04 2 2 Yes Success One swap is between revolutions.
2542_05 0 0 Yes Success
2543_02 2 0 Yes Success Manual approach - swap between

revolutions and then at the beginning.
2547_08 3 4 Yes Success Manual approach did not insert swap

between the revolutions while the al-
gorithm inserted it because the an-
tenna was above the threshold, 3rd
suggested swap did not have large
enough ED and need to reschedule.

2548_01 2 2 Yes Success One swap is between revolutions and
for the other there is a need to re-
schedule some commands.

2551_01 4 4 Yes Success One swap is between revolutions and
for the other there is a need to re-
schedule some commands.

Timeline validation

The revolution timeline for the INTEGRAL satellite contains commands to be sent to the spacecraft to conduct instru-
ment measurements, perform slews and put spacecraft instruments into the safe mode. Before this is done, the timeline
needs to be validated. Previously, several validation steps were conducted, but these did not evolve significantly since
the beginning of the mission. As the satellite operational time increased, problems such as thruster anomaly [5] oc-
curred. Therefore, there was a need to implement a new set of checks reflecting the current state of the spacecraft as
well as to automate checks previously performed manually.

Implementation

The revolution timeline is validated by the MPChecker tool developed in Python. shows the input/output and config-
uration diagram of the tool. The input files to the tool consist of five main types – EPO (timeline schedule), APF
(command's parameters), ESM (orbit parameters), revno.txt (revolution start times) and eclip.txt (information about
spacecraft eclipses). The revolution number, version and path to the log file folder are inputted via command line
parameters allowing simple integration with the MCS. The tool can be configured with two configuration files –
config.yml contains general options such as the location of revolution files and config-checks.yml allows to enable or
disable certain checks. Even if the check is disabled, it is executed, but its output is not considered in the final result
Success/Fail output. This logic was chosen to prevent information loss when certain checks need to be disabled. The
tool produces a log file containing reports of all checks, and the final result that can have three possibilities: "Success",
"Success with disabled checks" and "Fail". The log file is generated using Python's logging library.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 7

Figure 6. Functional diagram of the MPChecker.

The object-oriented programming concept was chosen to implement the tool allowing to split functionalities into
different classes thus allowing for better code reusability and modularity. Figure 7 shows the simplified UML design
of the class interconnection. The object of the main class MPChecker runs all of the checks where each check produces
success or fail output. Data for checks are fetched by the object of ParsersWrapper which implements the facade
design pattern [8]. ParsersWrapper provides a unified interface to the MPChecker. This approach splits the process
of information extraction and checks execution.

Figure 7. Object hierarchy of the MPChecker.

Before implementing parsers, it was considered to use those that can build an abstract syntax tree (AST) [9] such as
Parsimonious. These tools require grammar to be defined, and based on this grammar, they construct an AST. The
main disadvantage of this approach was the need to write code for searching in constructed AST during the data
processing. In the case of Parsimonious, the suggested approach is to use NodeVisitor that visits nodes of the AST and
returns the value based on the programmed condition.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 8

Another approach investigated was similar to object deserialisation. As [10] suggests, during object deserialisation,
data is first completely extracted from a stream and then converted into an object. An approach similar to deserialisa-
tion was chosen to fetch data for the MPChecker – each command or record of interest is turned into a predefined
object. This approach was chosen mainly due to its simplicity and less amount of code needed to be written.

A total of 12 checks were implemented. These checks can be split into two types: eclipse and non-eclipse. The non-
eclipse checks involve, for example, checking of all Event Designator (ED) commands are within the telecommand
(TC) window, or that there are no commands controlling instruments after they have been put into safe mode. Checks
of this type were implemented using searches through the list of commands and then comparing found results. Other
checks require that the eclipse entry and exit times are calculated according to the given rules. An example check that
was implemented:

DEBPG100 (ensure that the ED is for the revolution you are generating)
• Verify that the radiation belt entry/exit times are within 5 minutes of the CRIT_INST_ALT_DESC of this revolu-

tion and CRIT_INST_ALT_ASC of the next revolution.
• Check that the time for CRIT_INST_ALT_DESC is occurring before the time for CRIT_INST_ALT_ASC. If this

is not the case, please inform Flight Dynamics. If FD are not reachable, then contact the spacecraft operations
engineer (SOE) on call who will issue the relevant OI in order to change the BCPKT timer manually.

Non-eclipse season
• eclipse entry time (ECL_ENTR) = ED uplink time minus 2 days 1 hour
• eclipse exit time (ECL_EXIT) = ED uplink time minus 2 days

Eclipse season only
If there is an eclipse within the next 10 revolutions (see below), verify that the eclipse entry/exit times for the upcoming
eclipse are consistent with the eclipse file for the next eclipse (within a 5-minute margin). To view the eclipse file,
open a terminal session and type eclip.
• eclipse entry time (ECL_ENTR) = 3 minutes before penumbra start time
• eclipse exit time (ECL_EXIT) = penumbra end time

Radiation belt entry/exit, CRIT_INST_ALT_DESC and CRIT_INST_ALT_ASC times are loaded from current revolu-
tion and next revolution files using ParsersWrapper. If CRIT_INST_ALT_DESC is not before CRIT_INST_ALT_ASC
(of the next revolution), then the check will fail. The next step involves checking if there is an upcoming eclipse season
or not. This is done during the initialisation of the MPChecker object because more checks require the knowledge if
there is an eclipse season or not. Possible cases for the revolution eclipse types are non-eclipse season, pre-perigee
and post-perigee eclipse. The described check is specific because even in non-eclipse season, there might be a need to
perform the eclipse part if there is an eclipse in the following 10 revolutions. This information is obtained from the
eclip.txt file that contains information about when the eclipse umbra starts and ends.

The developed tool was integrated into the mission control system SCOS [11] to allow simple interaction
with the tool. Figure 8 shows the screenshot of the SCOS when a generation of timelines from 2541 to 2547 is con-
ducted. The mission planner only needs to press the "MPCHECKER" button that runs the tool. If the output is "Suc-
cess" or "Success with some checks disabled", the timeline generation process can proceed. The option "Success with
some checks disabled" was implemented to allow the mission planner to proceed with the timeline generation even in
the case when some of the checks fail. If the provided revolution data produce a "Fail" output, the timeline generation
cannot proceed. The mission planner has to review the log messages and perform either a replan or in an extraordinary
event, disable certain checks. One of the reasons for this is that there are some rare timelines that need to be generated
even with failing checks. Examples of these timelines are observations of Earth normally raising warnings and errors

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 9

[12]. Another reason is the if a bug in the check code was found, resulting in an errorneous fail, or a requirement
change due an on-board anomaly/failure. In these scenarios, the MPChecker would prevent generation of the valid
timeline.

Figure 8. MPChecker integration into mission control system SCOS.

Development Process, Verification and Validation

Python was chosen to implement the tool due to its ability to run on multiple operating systems, library availability
and development speed efficiency arising from its dynamic type system. Another reason was the fact that it was al-
ready preinstalled on the production machine with old operating system and there was no need to request another
software to be installed. The development process also involved heavy use of TDD as for the transponder swap sched-
uling tool. When the development phase was finished, the verification phase followed. The Verification control doc-
ument (VCD) was created according to ECSS-E-ST-10-02C and covered the verification process. This document also
included a verification matrix similar to the one suggested by [13] which was created for each check. Fig
\ref{fig:mpchecker-verification-matrix} shows the verification matrix for check 5.1. The matrix includes the check
name, passing and failing conditions for all possible cases of input values, and the name of the test case method
performing each verification step. Before the tool was inserted into the mission planning check timeline, there was a
need to perform the validation. The FCT conducted the validation by manually inputting timelines from the archive
to prevent any bugs. After the tool was fully tested on revolutions from the archive, it was handed over to the software
support team who included the tool in the next build of the MCS.

Figure 9. Verification matrix for check 5.1.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 10

Conclusion

Two useful Python tools that automate the transponder swap scheduling and mission schedule validation, were devel-
oped for the INTEGRAL mission. The emphasis on the testing was taken into account from the early development
phases by using the TDD approach. The final verification using defined verification processes followed by the vali-
dation was conducted and did not find any significant errors. These scripts are specific to the INTEGRAL mission,
however, similar approaches and design decisions can be implemented for a different mission. The transponder swap
script can be amended for a different mission by changing an input file, code used to calculate the antenna angle and
the threshold constants. MPChecker can be amended for a different mission by replacing the input side consisting of
parsers and implementing the specific check logic. The developed tools allow the INTEGRAL/XMM FCT to speed
up the mission planning phase allowing to spend more human resources on the other parts of the mission. For similar
projects related to spacecraft operations, it is suggested to follow the same development process that involves the
heavy use of TDD and the modularity of the code.

Acknowledgements

I would like to thank the whole INTEGRAL/XMM FCT for being accepted to the team. Namely, I would like to thank
Mr. Stefano De Padova for supervising the internship, Miss Greta de Marco for support on both projects, Dr. Timothy
Finn for help with the transponder swap scheduling and lastly, Mr. Richard Southworth for providing the INTEGRAL
CAD drawings and Christopher Saloman for developing the EpoParser that parses the timeline schedule from the
EPO file into Action objects.

References

[1] P. L. Jensen et al., ‘The INTEGRAL spacecraft – in-orbit performance’, Astron. Astrophys., vol. 411, no. 1, pp.

L7–L17, Nov. 2003, doi: 10.1051/0004-6361:20031173.
[2] M. Schmidt and D. Heger, ‘Managing the Integration of Flight Control Teams Considering INTEGRAL and

XMM-Newton Missions’, in SpaceOps 2008 Conference, Heidelberg, Germany, May 2008. doi:
10.2514/6.2008-3474.

[3] N. Pfeil et al., ‘NEW OPERATIONAL CONCEPT FOR GAIA, INTEGRAL & XMM-NEWTON’, presented
at the International Astronautical Congress 2019, Washington D.C., Oct. 2019. Accessed: Oct. 12, 2022.
[Online]. Available: http://iafastro.directory/iac/archive/browse/IAC-19/B6/3/54687/

[4] R. Much et al., ‘The INTEGRAL ground segment and its science operations centre’, Astron. Astrophys., vol.
411, no. 1, pp. L49–L52, Nov. 2003, doi: 10.1051/0004-6361:20031252.

[5] E. Kuulkers et al., ‘INTEGRAL reloaded: Spacecraft, instruments and ground system’, New Astron. Rev., vol.
93, p. 101629, Dec. 2021, doi: 10.1016/j.newar.2021.101629.

[6] M. Schmidt and M. Kirsch, ‘XMM-Newton, ESAs X-ray observatory, the Loss of Contact Rescue and Mission
Operations ready for the next decade’, in SpaceOps 2010 Conference, Huntsville, Alabama, Apr. 2010. doi:
10.2514/6.2010-2123.

[7] J. Hunt, ‘Introduction to Testing’, in Advanced Guide to Python 3 Programming, J. Hunt, Ed. Cham: Springer
International Publishing, 2019, pp. 165–174. doi: 10.1007/978-3-030-25943-3_14.

[8] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented
software. Reading, MA: Addison-Wesley, 2009.

[9] R. E. Noonan, ‘An algorithm for generating abstract syntax trees’, Comput. Lang., vol. 10, no. 3–4, pp. 225–
236, Jan. 1985, doi: 10.1016/0096-0551(85)90018-9.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 11

[10] K. Eguro and R. Mueller, ‘FPGA-Accelerated Deserialization of Object Structures’, Sep. 2009, [Online].
Available: https://www.microsoft.com/en-us/research/publication/fpga-accelerated-deserialization-of-object-
structures/

[11] R. V. Osorio, J. P. Lemos, T. W. Beech, G. G. Julian, and J.-P. Chaumon, ‘SCOS-2000 Release 4.0 : Multi-
mission/Multi-Domain Capabilities in ESA SCOS-2000 MCS Kernel’, in 2006 IEEE Aerospace Conference,
Big Sky, MT, USA, 2006, pp. 1–17. doi: 10.1109/AERO.2006.1656141.

[12] C. Lozano and A. S. Murillo, ‘INTEGRAL - RENAISSANCE OF OCCULTATION TECHNIQUES USING
THE EARTH’. Accessed: Nov. 28, 2022. [Online]. Available: http://iafastro.directory/iac/archive/browse/IAC-
11/B6/2/9774/

[13] Y. Liu, Q. Guo, W. Liu, R. Wang, and D. Zhao, ‘Verification Matrix Applied During Verification Process of
Airborne Software’, in Proceedings of the 5th China Aeronautical Science and Technology Conference, vol.
821, Chinese Society of Aeronautics and Astronautics, Ed. Singapore: Springer Singapore, 2022, pp. 1022–
1026. doi: 10.1007/978-981-16-7423-5_103.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 12

