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Mathematics Behind Image Compression

Stefany Franco®, Dr. Tanvir Prince’, Ildefonso Salva?, and Charlie Windolf®

Image compression is fundamental to NASA and the world’s daily operations. Images are transmitted to NASA from satellites
and even Mars, making it very important to send data as efficiently as possible through the low-bandwidth links to these
locations. This project focuses its studies in three areas. First, a hands-on mathematical analysis of the singular value
decomposition (SVD) compression. Second, on the area of two field experiments that explore the effect of light conditions, shot
composition and content, as well as the time of day and other variables on the file sizes of images generated in a digital camera
that implements JPEG compression. Third, is about an in-depth study of the JPEG algorithm. In the SVD study, the team
analyzed mathematically how matrices are manipulated to return to its equivalent original matrix and the theory about SVD is
reinforced by using the software Wolfram Mathematica to compress images from NASA satellites and Mars rover. Mathematica
analyzed the file size and timing data for the compression process. In the field experiment, a camera with fixed focus, aperture,
and other shooting parameters was used to take pictures at various times of day of the same scene to see how the amount and
quality of daylight influenced JPEG’s ability to compress images. The same camera with the parameters still fixed was used to
shoot various locations, indoors and outdoors, at the same time of day to see how the content of the photo influenced JPEG file
sizes. Finally, the team looked at JPEG’s compression algorithm using Wolfram Mathematica to better understand its efficiency
and power, since NASA’s radiation-hardened computer processors are generally not powerful enough to compress images with
JPEG. Loosely, the team found that JPEG is best able to compress images with little variation pixel to pixel in color or
brightness, and that it provides better looking images at the same file size than SVD compression.
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Introduction

This research project is in connection to computer
science and information theory.  When something is
compressed, it simply means information is stored in fewer
bits than the original data. Compression can be classified in
two categories: lossless or lossy. Lossless compression is
when the data is compressed but the original information
remains intact. Lossy compression however, is when the
information is compressed but some data is lost along the
process. Compression is useful because it can save storage
space and also increases transmission capacity.

The team focuses on three areas of study namely: the
exploration and manipulation of the mathematical algorithm
of SVD and hands-on experiment of image compression using
SVD with the help of Wolfram Mathematica program; the
actual two field experiments using digital camera with fixed
settings to determine if there are changes in the files size of
the same image from 9 AM to 2:00 PM with 30 minutes
interval and to determine the files sizes of different images
done at fixed time of the day; and the analysis of the
mathematical algorithm and hands-on experiment of JPEG
compression using Wolfram Mathematica program.

SVD is applicable to image compression using the
principles and operation of matrices. The image can be
represented by a matrix of m by n size and can be
decomposed into three matrices. The result of the
multiplication of these matrices will reconstruct the original
image when all singular values in decreasing order are
utilized. In order to compress the image, the first few singular
values are sufficient to produce a reduced file size of an
image but still preserving the important elements of the said
image. The more detail procedure can be seen on (Cooper &
Lorenc, 2006). This principle of SVD compression using

Wolfram Mathematica program is significant for storing the
digital files and transmission of information to NASA and to
the unman robot from Mars.

Two field experiments have to be conducted to infer
whether the JPEG file size of an image has relation with time
and various locations both indoors and outdoors provided that
the settings of the digital camera are constant. The results of
these two field experiments will be analyzed and will be
illustrated through scatter plots and bar graphs.

The JPEG field experiments' outcomes will serve as a
motivation to further the study of JPEG compression.
Moreover, the team will examine the algorithm of JPEG
compression by transforming mathematically the given image
and apply Wolfram Mathematica to perform JPEG
compression. To learn more about the mathematica software,
please see (Purdue University) and (Wolfram Mathematica,
2013).

Importance of compression

Data is something very useful in the present stage.
Basically everybody has access to it, some however need it
more than others. Some can be threatened by the amount of
space needed and their available budget for it. Others are
threatened not only by the budget, but by available technology
and human patience. With this in mind many will rely on data
compression as a way to meet certain requirements and
affordable data handling.

Image/Video data compression is a wvery critical
technology for many operations in NASA (White). The goal
of NASA is not only to lower the data amount by
compressing it, because this will save money and save space.
They also want to improve the time it takes to access that data
as some people might need the data to be available right
away, or their real time science may demand it.
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In NASA, image compression is used for three main
reasons. First, compression saves space. NASA receives
millions of bits of data each day that require a huge storage
facility. NASA also has two or more backups for all the
information they have. By using compression, NASA saves
an enormous amount of hard drive space.  Second,
image/video compression saves transmission time. For
example, the NASA Mars Rovers sends back pictures and
data which can take up to years to reach Earth if
uncompressed due to the massive distance between the two.
Distance also has a direct relationship with transmission rate,
for example Mars is 3.74x10® km away from Earth, as
opposed to the moon that is only 4.05x10° km. Lastly,
compression saves money by saving hard drive space and
time (Rahman Z.).

NASA  identified various lunar/Mars  mission
requirements that involve transmission of image/video, these
can be categorized into several types; high rate video, edited
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high rate video, low rate video, science imaging data, and
telerobotics video.

Some of the image/video data mentioned before can
benefit greatly from compression because it would take up
less space and therefore can be transmitted faster. Other
image/video data such as scientific data and telerobotics
videos are very valuable and irreplaceable, so NASA is
reluctant to consider any type of compression on these
(Group).

Mathematics behind Singular Value Decomposition
(SVD): Here we will only summarize the known result.
Readers are encouraged to consult any introductory books on
linear algebra, for example, (Strang, 2009). A nice
chronological history of “Singular Value Decomposition” can
be found on (Stewart, 1993). SVD is based on a theorem from
linear algebra that says that a rectangular matrix, “A”, can be
decomposed into the product of three matrices.

Ay = (U ) (D) (V1) = > ouy!

Where:
% Annis agiven matrix that represents an image

o

0,
o

0,
o

K3
"

Unp is an orthogonal matrix wherein the columns of matrix U are the orthonormal eigenvectors of AAT
Vo' is the transpose of an orthogonal matrix V wherein the columns of matrix V are the orthonormal eigenvectors of ATA.
Dn is a diagonal matrix wherein the diagonal elements are singular value, a;, equal to the square root of the eigenvalue

associated with the eigenvectors u; and v; in descending order. 61, >0,>.... > 06,>0

Mathematica Lab experiment for SVD compression

In this experiment, the team used Wolfram Mathematica
to study the effects of SVD compression on an image. SVD
compression uses singular value decomposition of matrices to
reduce the amount of information stored in an image so that it
can be stored in much less space than the original image was.
In singular value decomposition, a matrix — call it A —is
decomposed into a series of coefficients multiplied by two
other matrices derived from A. These coefficients are that
matrix A’s singular values. The series of singular values is
arranged in decreasing order, so that the first singular values

contain more information about the original matrix A than the
later values.

This decomposition can be used to compress images.
Images are represented as matrices inside computers. Since
the first singular values contain more information than the
later ones, by taking only the first few singular values it is
possible to reduce the amount of information contained in an
image and compress that image (Image Compression, 2011).
In Mathematica, we took an image of Hyperion, a small moon
of Saturn, displayed below (Spacetelescope, 2013) and
(Space):

Figure 1: Hyperion image - a small moon of Saturn

We then used Mathematica to compress the image with SVD, varying the number of coefficients. A series of compressed
picture using increasing number of singular values are given below, where we specify the number of singular value coefficients.
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Readers are encouraged to study these pictures carefully and see the increasing quality of the picture as we increased the number
of singular values.

Figure 4: SVD with 30 coefficients Figure 7: SVD with 60 coefficients
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Figure 9: SVD with 80 coefficients

SVD Compression Data and Conclusions

The team found a decreasing exponential trend in
compression ratio (original file size divided by the
compressed file size) as the number of singular values
increased. That trend makes sense because when all of the
singular values are used, the resulting matrix is identical to
the original matrix, and the resulting image is the same as the
original image. They should thus have the same file size. In
other word, as we take more singular values, we are
incorporating more information about the image and thus the
file size should increase. When we look at figure 14, we see
this very clearly. Although it is not very clear that why this
decreasing trend is exponential and not linear. A partial
explanation might be that the computation complexity of the
singular value decomposition is not in polynomial time and
thus we see an exponential decay rather than a linear decay.
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Figure 11: SVD with 100 coefficients
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Figure 12: SVD coefficients vs. compression ratio

There was no trend found in how long it took to
compress an image versus the number of coefficients used.
The team speculated that this could be caused by
Mathematica’s SVD algorithm, which might calculate every
singular value and then pick the ones requested. There might
be some other reason behind it including the CPU
performance of a specific computer, other task going on
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behind the scene (for example, virus scan), the strength of
internet connection on the specific place etc. Thus it is
difficult for the team to exactly pin point the reason of the
abnormality of the figure 15. The team plans to do a follow up
on this topic in the next summer.

SVD Coefficientsvs. Time
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Figure 13: SVD coefficients vs. time

The team concluded that SVD is very good at reducing
file sizes, but for very low file sizes (the compression ratio is
high), it often looks worse than JPEG compressed images. As
a compression algorithm, it is not often used for this reason.
Another reason for this algorithm not being implemented in
practice is the long time of computation.

Field Experiment

Objective: The objective for the two field experiments was to
discover what makes JPEG compression efficient.
Specifically, by shooting many pictures and isolating
variables like time of day and location, the team attempted to
see what kinds of lighting and shot composition yielded
photographs that JPEG was able to compress to a higher
degree.

Materials: digital camera with manual settings

Experiment 1: Time of Day vs. File Size

In Experiment 1, pictures were taken of one object from the
same angle and position and with the camera’s shooting
parameters (focal length, shutter speed, aperture, ISO, etc.) all
fixed. Pictures were taken every half hour and later imported
to a computer where their file sizes were plotted against time.
Through this procedure, a general trend was obtained for how
the quality of light produced by the time of day affected the
file size of the image after JPEG compression.

Figure 4: 9 AM image
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Figure 16 was the first one taken, and the camera’s shooting
parameters were optimized for this level of light. Therefore,
the picture came out very clearly and with visible detail. The
file size was 4.4 megabytes.

Figue 15: noon time iage

Since the shooting parameters were optimized during
lower light conditions, Figure 17 was washed out by the
bright noon sunlight. That element made the image less clear
and less detailed. The file size was 3.6 megabytes.

Observations for Experiment 1:

Time vs. Image File Size
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Figure 16: Time vs. image size

Figure 18 represent a graph of time versus file sizes.
There is somewhat of a general trend, with the highest file
sizes around 10 AM and the lowest file sizes around 1 PM.
All of the images were the same resolution (3000 by 4000
pixels for a total of 12 megapixels). Therefore, their raw
bitmap file sizes should have been the same, 12 megapixels
multiplied by three bytes per pixel (one byte for each of the
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red, green, and blue channels) or 36 megabytes. JPEG stayed
true to its advertised compression ration of about 10 to 1,
producing a range of file sizes all between 3.5 and 4.5
megabytes.

Looking at the data, the team concluded that the lower
file sizes around noon and 1 PM were produced by the
“washing out” effect caused by bright light conditions and
fixed camera parameters optimized for darker scenes. That
effect yielded less dynamic range and less detail in the
resulting images, which aligned neighboring pixel values
more closely and allowed JPEG to compress the image more
efficiently. JPEG was unable, however, to do much with the
shots around 9 and 10 AM, since the dynamic range was large
and neighboring pixel values often varied largely due to the
shadows in the leaves of the tree. Therefore, JPEG’s
algorithm was not very efficient as it relies on the similarity
of neighboring pixels.

Experiment 2: Location vs. File Size

Experiment 2 was similar in goal and procedure to
Experiment 1 except for a change in the independent variable.
Instead of fixing the location and angle and varying the time
of day, we varied the location and fixed the time of day. At
around 10:30 the team shot 23 photos in various conditions:
indoors and outdoors, dark and light, green and gray. The
photographs were imported to a computer where their file
sizes were analyzed qualitatively against the shot’s content.
Since the data was collected differently than that of
Experiment 1, there was no quantitative trend available for
analysis, but the team was able to make some observations by
comparing the pictures with the highest file sizes to the
pictures with lower file sizes.

Figure 17: Outdoor park image (same time of the day)

Figure 19 had the largest file size, 4.4 megabytes. Note
the dynamic range and varied bright and shadowy regions and
the overall clarity of the shot.
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Figure 18: Outdoor street image (same time of the day)

Figure 20 comes in the middle of the pack, with a 2.6
megabyte file size. Note how washed out the sky and
sidewalk are and the presence of detail in the trees, buildings,
and cars.

Figure 19: Indoor image (same time of the day)

Figure 21 has a 2 megabyte file size, putting it near the
bottom of the group in file size. The obscurity of the shot cut
out a lot of the detail and made many of the pixels,
particularly in the lower right of the photograph, quite close to
each other in color and brightness.
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Figure 20: Outdoor sky image (same time of the day)
Figure 22 had the lowest file size, 1 megabyte. Since it is

a shot of the sky, all of the pixels have values that are quite
close to each other.

Observations for Experiment 2:

File Sizes
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Figure 21: Image file sizes

Looking at the different images and making observations
similar to those above, a conclusion was drawn that
corroborated the conclusion from Experiment 1. Since the
images with the smallest file sizes had the least detail and
dynamic range, and since the images with the highest file size
tended to have more detail and range, it seemed again that
more detail made it more difficult to compress the image with
JPEG. More specifically, if the values of neighboring pixels
were not similar to each other, the algorithm was less
effective at compressing that pixel neighborhood.

So in conclusion, we can say that fewer variations in
color throughout an image will results higher compression
ratio and still retain the important features of the image. On
the other hand, the more details the picture is (with a lot of
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color changes from pixels to pixels), JPEG takes more file
size to attain the compression ratio.

Experiment Using JPEG

Brief History of JPEG

In 1992, JPEG became an international standard for
compressing digital still images. The acronym JPEG comes
from the Joint Photographic Experts Group. JPEG was
formed in the 1980's by members from the International
Organization for Standardization (ISO) and the International
Telecommunications Union (ITU). Over 80% of all images
that are transmitted via the internet are stored using the JPEG
standard. Despite the popularity of the standard, JPEG
members quickly identified some issues with the format and
also compiled a list of enhancements that should be included
in the next generation of the format (Math is Fun).

In computing, JPEG is a commonly used method of lossy
compression for digital photography (image). The degree of
compression can be adjusted, allowing a selectable tradeoff
between storage size and image quality. JPEG typically
achieves 10:1 compression with little perceptible loss in
image quality.

JPEG compression is used in a number of image format.
JPEG/EXif is the most common image format used by digital
cameras and other photographic image capture devices; along
with JPEG/JFIF, it is the most common format for storing and
transmitting photographic images on the world wide web
(www).

JPEG can be used to compress a digital still image.
There are four basic steps in JPEG compression algorithm.
(Mathematics, 2011)

1. Preprocessing

2. Transformation

3. Quantization

4.  Encoding

How JPEG works?

o JPEG Compression breaks an image into a series of
square patches of pixels or in other words 8x8
blocks. Then you substract 127 from each pixel intensity
in each block. (Preprocessing)

o  Atwo dimensional Discrete Fourier Cosine Transform is
applied to each patch. (transformation)

o  Transform coefficients that are very small in magnitude
will have very little affect on the image and are,
therefore, set to zero. (Quantization)

o  The coefficients are then reduced in size by applying a
compression algorithm. This compression algorithm is
Hoffman Coding. (Encoding)

o When restoring the image, the image file s
decompressed and each patch is sent through an inverse
Discrete Fourier Cosine Transform. (Inverse Process)
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Approximation

of the original
image

Original Image

Figure 22: Block diagram of JPEG compression algorithm

Figure 23: JPEG Compression-Decompression Algorithm

The following block diagrams will be explain in detail using Wolfram Mathematica. Example 1 (The detail explanation on
the JPEG compression on the happy face) JPEG compression Algorithm of an artificial image “smiley face” using Wolfram
Mathematica Program. As we proceed with the description, all the necessary commands of mathematica are also given in the
appropriate places. The following image (black and white only using 0 and 1) is created using "Image" command. The size is 16
by 16.
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a=Image[{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1},
{1,1,1,1,1,000,00,0,1,1,1,1,1},
{1,1,1,1,0,1,1,1,1,1,1,0,1,1,1, 1},
{1,1,1,0,1,1,1,1,1,1,1,1,0,1,1, 1},
{1,1,0,1,00,1,1,1,1,0,0,1,0, 1, 1},
{1,0,1,1,1,1,1,1,0,1,1,1,1,1,0, 1},
{1,0,1,1,1,1,1,1,0,1,1,1,1,1,0, 1},
{1,0,1,1,1,1,1,1,0,1,1,1,1,1,0, 1},
{1,0,1,1,1,1,1,1,1,1,1,1,1,1,0, 1}, Figure 24: Artificial "smiley" image
{1,0,1,1,1,1,0,1,1,1,1,1,0,1,0, 1},
{1,1,01,1,1,1,0,1,1,1,0,1,1,0,1},
{1,1,1,0,1,1,1,1,0,0,0,1,1,0, 1, 1},
{1,1,1,1,01,1,1,1,1,1,1,0,1,1, 1},
{1,1,1,1,1,00,0,0,0,0,0,1,1,1,1},
{1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1}}]

Let us convert this image to a matrix - this will be a 16 by 16 matrix whose entries are 0 and 1
b = ImageData[a];
ImageData[a] // MatrixForm

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 0. 0. 0. O0. 0. 1. 1. 1. 1. 1.
1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1.
1. 1. 0. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1.
1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1.
1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1.
1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1.
1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.
1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1.
1. 1. ¢. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 1.
1. 1. 1. 0. 1. 1. 1. 1. 0. ©0. 0. 1. 1. 0. 1. 1.
1. 1. 1. 1. ¢. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1.
1. 1. 1. 1. 1. 0. 0. 0. 0. O0. 0. 0. 1. 1. 1. 1.

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]|

Preprocessing:

First we need to convert all the entry between 0 and 255. This is accomplished by using the "Byte" command. Recall that
there are two scale of color - one is given by value between 0 and 1 and the other is given by value between 0 and 255 (this one
only use integer).
¢ = ImageData[a, "Byte"];

ImageDatal[a, "Byte"] // MatrixForm
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Now we need to make the data symmetric around origin - this is done by subtracting 127 from each entry of the matrix. After this
all entry of the matrix will be between -128 and 128.

ufx ] :=x-127;

d = Maplu, c];

Mapl[u, c] // MatrixForm

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 -127 -127 -127 -127 -127 -127 128 128 128 128 128
128 128 128 128 -127 128 128 128 128 128 128 -127 128 128 128 128
128 128 128 -127 128 128 128 128 128 128 128 128 -127 128 128 128
128 128 -127 128 -127 -127 128 128 128 128 -127 -127 128 -127 128 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 128 128 128 128 128 128 -127 128
128 -127 128 128 128 128 -127 128 128 128 128 128 -127 128 -127 128
128 128 -127 128 128 128 128 -127 128 128 128 -127 128 128 -127 128
128 128 128 -127 128 128 128 128 -127 -127 -127 128 128 -127 128 128
128 128 128 128 -127 128 128 128 128 128 128 128 -127 128 128 128
128 128 128 128 128 -127 -127 -127 -127 -127 -127 -127 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

Finally we need to partition the matrix into 8 by 8 submatrix. In this case, since the matrix is 16 by 16, we will get 4 pieces of 8
by 8 submatrix. If the dimension of the matrix is not divisible by 8, then we "pat" the matrix at the end - this means add minimum
number of 0 so that the dimension will be divisible by 8. To partition a matrix, we use "Partition" command.

{e, f} = Partition[d, {8, 8}];

Partition[d, {8, 8}] // MatrixForm

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 -127 -127 -127 -127 -127 -127 128 128 128 128 128
128 128 128 128 -127 128 128 128 128 128 128 -127 128 128 128 128
128 128 128 -127 128 128 128 128 128 128 128 128 -127 128 128 128
128 128 -127 128 -127 -127 128 128 128 128 -127 -127 128 -127 128 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 -127 128 128 128 128 128 -127 128
128 -127 128 128 128 128 128 128 128 128 128 128 128 128 -127 128
128 -127 128 128 128 128 -127 128 128 128 128 128 -127 128 -127 128
128 128 -127 128 128 128 128 -127 128 128 128 -127 128 128 -127 128
128 128 128 -127 128 128 128 128 -127 -127 -127 128 128 -127 128 128
128 128 128 128 -127 128 128 128 128 128 128 128 -127 128 128 128
128 128 128 128 128 -127 -127 -127 -127 -127 -127 -127 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

To separate these four submatrix, we use four different name for four submatrix.
el =e[[1]];

e2 = e[[2]];

fL =1[[1]];

f2 = f[[2]];

e[[1]] // MatrixForm

e[[2]] // MatrixForm

fL[1]1] // MatrixForm

fL[2]] // MatrixForm

128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128
128 128 128 128 128 -127 -127 -127
128 128 128 128 -127 128 128 128
128 128 128 -127 128 128 128 128
128 128 -127 128 -127 -127 128 128
128 -127 128 128 128 128 128 128
128 -127 128 128 128 128 128 128
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128 128
128 128
-127 -127
128 128
128 128
128 128
-127 128
-127 128
128 -127
128 -127
128 -127
128 128
128 128
128 128
128 128
128 128
(-127 128
128 128
128 128
128 128
-127 -127
128 128
=127 -127
128 128

128 128 128
128 128 128
-127 128 128
128 -127 128
128 128 -127
-127 -127 128
128 128 128
128 128 128
128 128 128
128 128 128
128 128 128
-127 128 128
128 -127 128
128 128 -127
128 128 128
128 128 128
128 128 128
128 128 128
128 128 -127
128 -127 128
-127 128 128
128 128 -127
-127 -127 128
128 128 128

128
128
128
128
128
-127
128
128

128
128
128
128
128
128
-127
128

128
128
128
128
-127
128
128
128

128
128
128
128
128
128
-127
-127

128
128
-127
128
128
128
-127
128

-127
-127
-127
-127

128
128
128
128

128
128
128
128
128
128
128
128

128
128
128
-127
128
128
-127
128

128
128
128
128
128
128
128
128 )

Transformation:

Volume 3, Issue 1: pp. 46-62

First consider the submatrix el (the upper left hand corner). The process is exactly same for all four so we will just explain
one in detail. This el is an 8 by 8 matrix. The transformation is to multiply the el as follows: U times el times U transpose where
U is the 8 by 8 DCT matrix. This U will be an orthogonal matrix. This is a fixed matrix. There is only one 8 by 8 DCT matrix
(although a few variation exist the one below is the most common one). Instead of U, we name it U8:

g[k_] := Piecewise[{{1, k < 0}, {1, k > 0}}, 1/Sqrt[2]];

m = 8;

U8 = Table[(4/m)*g[K] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, O, m - 1}, {n, O, m - 1}];

V8 = Table[(4/m)*g[k] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, O, m - 1}, {n, O, m - 1}] // MatrixForm

1 1 1 1 1 1

242 242 242 24/7 242 242
soos[] Feos[F] Zsin[F] Zsin[F] -Zsin[{] -3sin[3F]
zoos[5] Fsin[f] -Zsin[§] -Fces[§] -Fces[f] -;sin[{]
;Cos[3F] -isin[F] -jces[f] -3sin[3F] Isia[fF] Jces[d

1 1 1 1 1 1

=3 - - Jz -
1_-2\.23_” x 1 211 1 Zﬁii_" _1223_“ _Lzzi
2 Sin[ 16 cos[lﬁ 2 Sin[li] 2 CDE[ 16 2 003[ 16] 2 Sin[lﬁ]
: 8in[§] --C“[I'] 3 Cos[ 3] -I-Sin[f] -ysin[3]  jcoes[F]
%Sin[%] -2 Sin[ﬁ] 1(:0:[—:] Cos[“] %Cos[%] -%Cos[s—:]

We multiply el with the above DCT matrix as described before:
T1 = N[U8.el.Transpose[U8]];
N[U8.el.Transpose[U8] // MatrixForm]
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1 1
242 242
-3 Cos[] - ces[]
:8in[§]  Fcos[]
:sin[ %] -7cos[3]
_112 2:1'2_
2 00s[5] -7sin[3]
-3cos[Z] ;sin[Z]
] 8 2 B
3 sin[3F] -3sin[F]
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705.25 40.5692 B83.2934 22.9808 63.75 115.531 34.5013 27.1075
81.6929 177.866 48.3388 -28.B794 -B1.6929 -130.228 -68.4012 -37.1634

127.9 131.781 159.375 38.2056 107.689 67.0225 76.9531 58.7123
28.6867 115.938 178.911 18.2362 28.6867 -32.3107 105.158 -43.B372
127.5 115.531 48.7921 40.5692 127.5 27.1075 117.795 22.980&

19.1679 25.1653 42.B73 50.9827 19.1&79 101.53 38.5057 70.B595
190.983 179.636 13.2031 59.737 93.3986 1.57928 159.375 -48.1935
16.2497 71.6647 147.306 #85.1504 16.2497 137.707 78.6048 212.368 |

This is the end of the transformation of e1l. We do the same for e2, f1 and f2. We do not display all the output. The transformation
of el, e2, 1, f2 are denoted by T1, T2, T3 and T4.

T2 = N[U8.e2.Transpose[U8]];

T3 = N[U8.fL.Transpose[U8]];

T4 = N[U8.f2.Transpose[U8]];

Quantization:

First consider T1 (the other are similar). The main idea is to ignore the lowest value. But how can we decide which one is
lower and which one is not? This is why there is a fixed 8 by 8 luminance matrix (we call this Z in here) - you may call it a
quantization matrix. This matrix is given below:

Z = {{16, 11, 10, 16, 24, 40, 51, 61}, {12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56}, {14, 17, 22, 29, 51, 87, 80,
62}, {18, 22, 37, 56, 68, 109, 103, 77}, {24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101}, {72, 92, 95, 98,
112, 100, 103, 99}};

Z /I MatrixForm

The quantization matrix is designed to provide more resolution to more perceivable frequency components over less
perceivable components (usually lower frequencies over high frequencies) in addition to transforming as many components to 0,
which can be encoded with greatest efficiency.

16 11 10 16 24 40 51 661
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Each element of T1 is divided by the corresponding element of Z and round to the nearest integer. This is the quantization
process. The quantization of T1 is denoted by qT1, the quantization of T2 is denoted by qT2 etc.
qT1 = Table[Round[TL[[s]I[[tI1/Z[[sITLItII1. {s, 1, 8}, {t. 1, 8}1;
qT1 // MatrixForm

44 4 8 -1 3 3 1 0

7 15 -3 -2 -3 -2 -1 -1
9 -10 -10 2 3 1 1 1
2 -7 8 1 -1 0 -1 -1
7 -5 1 1 -2 0 1 0
-1 1 -1 -1 0 1 0 -1
-4 3 o -1 1 0 -1 0
\ 0 1 -2 1 0 -1 1 2
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qT2 = Table[Round[T2[[s]I[[C]I/Z[[sIIL[t]1]. {s, 1, 8}, {t, 1, 8}];

o -4
o 3
1 -2
o 1
-2 0
o -1
1 0
o 1

qT3 = Table[Round[T3[[s]I[[CII/Z[[SIILIt]1], {s, 1. 8}, {t, 1, 8}];

4
5
3
-2
-1
1
0
1

OCO0OO KR KENN

qT4 = Table[Round[TA[[s]][[X]I/Z[[sIILItII], {s, 1. 8}, {t. 1, 8}];

qT2 // MatrixForm

(40 -12 O -3
14 -5 4 7
5 4 -15 -4
4 9 10 1
7 5 1 -1
-2 -1 -1 o0
-3 -2 1 1
o -1 -2 -1

qT3// MatrixForm

(42 5 -5 5
0O -18 -5 4
5 -2 -5 -5
1 -1 6 -3
5 -5 1 3
-7 6 -3 1
2 -2 1 -1
-1 1 0o -1

qT4 /I MatrixForm
32 -8 -1 -5
1 19 -7 -6
9 -1 -8 0
-8 -11 -4 -2
o -2 -3 -1
-5 -2 1 1
3 3 1 -2

\-3 -3 -1 0

Coding:

3
2
-1
0
1
-1
-1
1

-4
-3
-1
1
-1
-2
1
1

3
2
0
-2
-1
1
0
-1

-2
-2
-1
0
2
0
-2
0

Now Huffman Coding is applied. Huffman coding is a lossless compression algorithm that eliminates redundant data.

Inverting the process:
This is NOT a true inversion because some steps for example the quantization are not invertible process. But we will get an

approximation of the original image. The process is simple. Consider qT1 (quantization of T1): We will multiply each entry of

qT1 by the corresponding entry of Z - we will call this matrix reverseqT1: This will be an approximation of T1.

reverseqT1 = Table[qT1[[sI1L[tI1*Z[[sIIL[t]]. {s. 1, 8}, {t, 1, 8}];

reverseqT1 // MatrixForm

704 44
84 180
126 -130
28 -119
126 -110
-24 35
-196 192
0 92
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80 -16
-42 -38
-160 48
176 29
37 56
-55 -64
0 -87
-190 98

72
-78
120
-51
-136
0
103
0

120
-116
57
0
0
104
0
-100

51
-60

69
-80
103

0
-120

103

0
-55
56
-62
0
-92
0
198
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Now multiply this above matrix on the left by U8 transpose and on the right by U8 - this will reverse the process of
transformation. Of course, we round everything to nearest integer. This will be an approximation of e1. So we call it reverseT1.
reverseT1 = Map[Round, N[Transpose[U8].reverseqT1.U8]];

reverseT1 // MatrixForm

133 120 127 158 100 148 124 108
140 130 100 118 125 134 118 161
131 115 164 135 140 -135 -150 -125
114 155 96 135 -140 114 136 134
145 106 137 -101 106 173 132 102
129 106 -104 100 -127 -133 113 148
118 -104 107 147 121 146 132 111
134 -131 118 119 153 119 114 132

Finally we add 127 to each entry to make the value 0 and 255 (if the entry is below 0 or above 255, it is assumed the value 0 and
255 respectively). We call it j1.

plx ] :=x+ 127;

j1 = Map[p, reverseT1];

j1 /I MatrixForm

260 247 254 285 227 275 251 235
267 257 227 245 252 261 245 288
258 242 291 262 267 -8 -23 2

241 282 223 262 -13 241 263 261
272 233 264 26 233 300 259 229
256 233 23 227 O -6 240 275
245 23 234 274 248 273 259 238
261 -4 245 246 280 246 241 259

Do the same for other but not show the output:

reverseqT2 = Table[qT2[[s]1[[t11*Z[[sI1[[tI]. {s. 1, 8}, {t, 1, 8}1;
reverseT2 = Map[Round, N[Transpose[U8].reverseqT2.U8]];

j2 = Maplp, reverseT2];

j2 /I MatrixForm

265 248 283 230 266 258 253 253
251 243 220 279 237 292 238 249
17 16 24 240 266 269 237 272
229 275 227 16 238 214 263 253
244 253 251 269 17 281 249 259
281 244 -7 -4 226 -7 276 251
-2 243 245 282 244 243 12 242
-10 262 260 242 263 258 0 257

reverseqT3 = Table[qT3[[sI1[[t11*Z[[s11[[t]]. {s. 1, 8}, {t, 1, 8}];
reverseT3 = Map[Round, N[Transpose[U8].reverseqT3.U8]];

j3 = Maplp, reverseT3];

j3 /I MatrixForm

271 -19 252 270 263 242 248 259
250 13 265 241 249 270 245 262
246 41 256 233 274 216 8 265
246 242 4 240 262 307 246 -22
284 214 267 16 245 188 294 234
225 290 240 255 6 278 261 284
251 276 241 269 238 -17 -13 -22
251 259 254 232 296 242 259 265

reverseqT4 = Table[qT4[[SI1LEI1*Z[[sIIL[t]]. {s. 1, 8}, {t, 1, 8}];
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reverseT4 = Map[Round, N[Transpose[U8].reverseqT4.U8]];
j4 = Maplp, reverseT4];

j4 /I MatrixForm
-12 261 224 276 259 226 5 265
272 238 268 254 247 270 17 221
256 245 233 257 -1 267 0 274
255 282 274 -17 259 232 -27 276
12 -53 17 235 274 26 284 239
245 281 243 287 -18 231 261 243
25 -20 -11 -2 238 304 223 266
241 253 268 261 253 251 252 261

Putall j1, j2, j3 and j4 into a big matrix and create the image:
j =Join[Join[j1, j2, 2], Join[j3, j4, 2]];
Join[Join[j1, j2, 2], Join[j3, j4, 2]] // MatrixForm

260
267
258
241
272
256
245
261
271
250
246
246
284
225
251
251

247
257
242
282
233
233
23
-4
-19
13
41
242
214
290
276
259

254
227
291
223
264
23
234
245
252
265
256
4
267
240
241
254

285
245
262
262
26
227
274
246
270
241
233
240
16
255
269
232

227
252
267
-13
233
0
248
280
263
249
274
262
245
6
238
296

275
261
-8
241
300
-6
273
246

251 235
245 288
-23 2
263 261
259 229
240 275
259 238
241 259
242 248 259
270 245 262
216 8 265
307 246 -22
188 294 234
278 261 284
-17 -13 -22
242 259 265

265
251
17
229
244
281
-2
-10
-12
272
256
255
12
245
25
241

248
243
16
275
253
244
243
262
261
238
245
282
-53
281
-20
253

283
220
24
227
251
-7
245
260
224
268
233
274
17
243
-11
268

230
279
240
16
269
-4
282
242
276
254
257
-17
235
287
-2
261

266
237
266
238
17
226
244
263
259
247
-1
259
274
-18
238
253

258
292
269
214
281
-7
243
258
226
270
267
232
26
231
304
251
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253
238
237
263
249
276
12
0
5
17
0
-27
284
261
223
252

253
249
272
253
259
251
242
257
265
221
274
276
239
243
266
261

Image[j, "Byte"] [Finally This will create the JPEG compressed Image of the smiley face. Since the image is artificially created
with only the value of 0 and 1, we see that the compressed image has a lot of noise around the 8 by 8 blocks. But in the everyday
image, the nearby pixels have approximately equal value and thus in the compressed image the noise is minimum and very hard

to recognized it through naked eye.]

Figure 25: JPEG Compressed "smiley" image

Advantages of JPEG compression:

» Most common file used across the Web
(80%).

» It can make image files smaller.

» Editing is not required to print a file in
JPEG

» JPEG files can be processed in your
camera.

Disadvantages of JPEG compression:

»  Compression discards some data.

»  Compression compromises image quality.

» JPEG does not handle line drawings well
and it does not support animation.

» Compression is applied every time you

save an image using JPEG.
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www.jofsr.com

Conclusion

This research project, which focused on three parts
mentioned above, concluded that JPEG was more functional
to compress images with little variation pixel to pixel in color
or brightness. JPEG further generated better images at the
same file size than SVD compression.

In doing SVD compression using Wolfram Mathematica
program as shown in Figures 3 to 13, it was concluded that
the relation between compression ratio and the singular values
(SVD coefficients) was a decreasing exponential function as
shown in figure 14. Also, there was no relation found in how
long it took to compress an image versus the number of
coefficients used as shown in figure 15.

In the SVD compression experiment, the team concluded
based on Mathematica’s timing data that there was no trend in
compression time versus the number of SVD coefficients
taken. The team speculated that this could be due to the fact
that Mathematica calculates every singular value and then
selects the required values, as well as due to random
fluctuations in computer activity. The team also found that the
fewer singular values were used, the smaller the resulting file
size was. Moreover, incrementing the number of coefficients
caused a greater increase in file size when the number of
coefficients was small versus when it was large. As the
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number of coefficients increased, the compression ratio
approached one.

That Singular Value Decomposition (SVD) is an
important topic in linear Algebra where students will put
strong emphasis on exploring the application of image
compression. This research project will encourage high school
students to appreciate math by looking at the algorithm of
SVD compression with the use of the properties and operation
of matrices. SVD compression can be an elective math for
senior students and will serve as one of the culminating
activity. Students can compare and contrast how SVD can
reconstruct the original image and how the Mathematica
program can perform image compression. Students can select
different kinds of images and apply Mathematica program in
order to compress the image and measure the compression
ratio.

Field experiment 1 (a graph of time versus file sizes) as

shown in figure 18, revealed that there was apparently a
general trend, with the highest file sizes around 10 AM and
the lowest file sizes around 1 PM. Furthermore, the more
detail was the image, the bigger was the file size.
Field experiment 2 (a graph of different images taken at the
same time of the day) as shown in figure 23, brought a point
that the images with the smallest file sizes had the least detail
and the images with the highest file size seemed to have more
detail.

The JPEG field experiments showed that JPEG is much
better at compressing scenes that have little variation in light
and tone. The image that was best compressed was an image
of a uniformly blue sky, whereas JPEG had great difficulty
compressing an image with dappled shadows and lots of
colors. The experiment also showed that exposing an image
with too much light, leading to a ‘washed out’ quality, could
lead to smaller file sizes since some detail is eliminated.

The theoretical JPEG hands on experiment showed the
problems with basic JPEG compression. There are lots of
noise around the borders of the 8 x 8 blocks that the algorithm
splits the image into, and there are obvious compression
artifacts around edges, particularly in images of text or line
drawings.

The team discovered that JPEG is more functional to
compress images with little variation pixel to pixel in color or
brightness. JPEG further generated better images at the same
file size than SVD compression.

For future work, it may consider studying other compression
programs and their algorithm used by NASA such as wavelet-
based image compression like JJEG2000 and ICER.
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