

Reinforcement Learning: Playing Tic-Tac-Toe

Jocelyn Ho1, Jeffrey Huang, Benjamin Chang, Allison Liu and Zoe Liu

1Georgia Institute of Technology

ABSTRACT

Machine learning constructs computer systems that develop through experience. Applications surround disciplines in
daily life ranging from malware filtering to image recognition. Recent research has shifted towards maximizing effi-
ciency in decision-making, creating algorithms that quickly and accurately process patterns to generate insight. This
research focuses on reinforcement learning, a paradigm of machine learning that makes decisions through maximizing
reward. Specifically, we use Q-learning – a model-free reinforcement learning algorithm – to assign scores for differ-
ent decisions given the unique states of the problem. Widyantoro et al. (2009) have studied the effect of Q-learning
on learning to play Tic-Tac-Toe. However, the study yielded a win/tie rate of less than 50 percent. We believe that
does not represent an effective algorithm to exploit the benefits of Q-learning fully. In the same environment, this
research aims to close the gaps in the effectiveness of Q-learning while minimizing human input. Data were processed
by setting the epsilon value as 0.9 to ensure randomness, then consecutively decrease with a constant rate as possible
states increase. The program played 300,000 games against its previous version, eventually securing a win/tie rate of
approximately 90 percent. Future directions include improving the efficiency of Q-learning algorithms and applying
the research in practical fields.

Introduction

Background

AlphaGo is the first computer to defeat a human professional player in Go, a board game that contains 10172 possible
position combinations (Silver et al., 2016). AlphaGo continued to improve by training against artificial and human
intelligence, eventually defeating first-tier players around the world (Deepmind, 2021). AlphaGo opens new avenues
for artificial intelligence to advance in disciplines dominated by humans. With the example of AlphaGo, artificial
intelligence can be applied to fields existing in fiction, such as autonomous robots, chatbots, and trading systems
(Ritthaler, 2018).

Motivation

Given the trend of artificial intelligence like AlphaGo, we intend to solve real-world problems through a similar au-
tomated approach. Board games are the simplest means to train a computer given their adequate environment of having
certain rules and possibilities for outcomes (Ritthaler, 2018). Under a perfect information system, artificial intelligence
could calculate exact outcomes and derive a goal of interest by figuring out how to maximize utility. Considering the
multitude of existing board games, Tic-Tac-Toe proved to be the simplest and most comprehensible game. Though
possible positions (360,000) are relatively less than Go, Tic-Tac-Toe still provides the complexity and nuance to be
solved with deep neural networks such as reinforcement learning (Ritthaler, 2018).

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 1

Research Context and Goals

There are at least two methods for a computer to reach an outcome from previous actions: decision tree and reinforce-
ment learning (Sutton et al., 2018). Decision trees are graphs that contain branches to represent specific conditions,
with outcomes located at their ends (Sutton et al., 2018). Each node in the decision tree constitutes a given action for
which the condition is met. However, the decision tree requires sorting all the possible combinations, taking an enor-
mous amount of memory. Hence, many people use an extended version – the min-Max algorithm – to estimate the
quality of action by backtracking results. The opponent attempts the optimal move and a value is assigned to the
outcome for this algorithm (Sutton et al., 2018). The depth of the tree depends on the number of moves; to optimize
performance, the evaluation of function with respect to depth is used to estimate the final value of the match. Never-
theless, the algorithm uses massive state space and has no evaluation functions that are sufficient for an immense
amount of outcomes. Underlying the aforementioned flaws of different algorithms, we intend to use reinforcement
learning, an algorithm that automatically finds a balance between exploration of pathways and exploitation of
knowledge – to train the computer to play Tic-Tac-Toe (Friedrich, 2018).

Through reinforcement learning, the computer will optimize rewards through interaction with the environ-
ment and update itself with a better prediction based on its experience. In Q-learning, each action comes with a reward
based on the outcome, a value calculated based on the current state, and optimal action from the previous state (Wat-
kins, 1992). These variables allow machines to calculate a new value and repeat the process until the game terminates.
After many consecutive simulations, machines would experience different patterns, allowing them to accurately esti-
mate the probability of winning the game (Watkins, 1992). We aim to demonstrate a high success rate through Q-
learning and yield a success/tie rate above the existing literature today.

Literature Review

Many studies related to the utilization of machine learning through simple board games arise since the nascent of
computer-operated programs such as those in chess. In 1949, Claude Shannon first started to develop a computer-
operated chess program (Shannon, 1950). Building on Shannon's work Alan Turing developed a computer-simulated
checker player (Morris and Jones, 1984). In 1966, MacHack 6 by Greenblatt (1967) became the first computer-oper-
ated chess program that defeated a human player in a tournament. The program uses the approach of searching tech-
niques where the state is the board configuration and operations are all potential steps. It uses a game tree with a depth
of four levels, and choosing certain choices and levels will maximize a specific utility function.

In 1989, Watkins first introduced Q-learning, a model-free reinforcement learning algorithm (Watkins,
1989). Ever since the introduction of the algorithm, many studies have built themselves upon it, such as those of Even-
Dar and Mansour (2001) and Hu and Wellman (2003). Several previous studies have covered the utilization of rein-
forcement learning on simple board games. Widyantoro et al. (2009) apply a Q-learning algorithm to play Tic-Tac-
Toe. In the study, a new update rule is established by only updating the Q-value when transitioning from the final
move back to the first move. Though its partial-board representation yields comparable results to that of a human
player, its full-board representation only has a win/tie rate of less than 50%. Thus, our study will implement a new
design for the reward setup and utilize optimistic initialization to encourage the agent’s learning and improve the
efficiency of this study.

Methods

In reinforcement learning, no prior information on the potential value of actions is given. The essential goal is to
maximize the cumulative rewards of tasks through exploring the environment and exploiting learned materials. In Tic-
Tac-Toe, the learning agent repetitively plays a standard game: a 3 x 3 board where three X’s or O’s are placed

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 2

consecutively diagonally, vertically, or horizontally to win. The learning agent must consider both the immediate and
subsequent future rewards to achieve a combination of delayed rewards.

Figure 1. A figurative representation of the State-action-reward-state-action (SARSA) algorithm, which follows the
Markov decision process policy. At time t, the agent will take action At, which responds to the environment and
receives reward Rt and state St.

In a reinforcement learning environment, the learning agent’s policy is a learned strategy dictating the agent's
actions as a function of the environment and its current state. The reward signals are numerical rewards after an action.
Agents alter their policy to maximize reward signals: strategy is established by prioritizing actions with high rewards
in the future. With the eventual reward being +1 after a win and punishment being -1 after a loss, the agent’s policy
will alter to avoid the actions leading to the low reward.

A finite Markov Decision Process consists of the interactions between the agent and environment, with fac-
tors such as the action, state, and reward. This process can be represented by a stochastic series of possible actions
that motivate the agent to seek various rewards, which leads to partially random and partially machine-controlled
outcomes. Therefore, it operates through a value function of step t. In the current state s, the agent could choose action
a. The system is moved to the next state s’, which only depends on the current state and the action. A corresponding
reward R is given after the action. The probability of state s’ could be represented by the transition function 𝑝𝑝𝑝𝑝(𝑠𝑠, 𝑠𝑠′),
a solution to the Bellman equation, which shows the relationship between the current state and successor states. In the
state s, action a is decided by policy 𝜋𝜋. The probability function p then decides the corresponding reward r and the
next state s’. By weighing possible steps on the probability of occurring and averaging them, the Bellman equation
provides the immediate reward by action a in state s and the maximum reward in the next state.

𝑸𝑸𝒏𝒏𝒏𝒏𝒏𝒏(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) ← 𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) + 𝜶𝜶 ⋅ (𝒓𝒓𝒕𝒕 + 𝜸𝜸 ⋅ 𝒎𝒎𝒂𝒂𝒎𝒎𝑸𝑸(𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂) − 𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕))

Equation 1: Bellman Optimality Equation is called iteratively to update the Q value until it converges to its optimal.
On each update, the Q value is modified by adding earned reward 𝒓𝒓𝒕𝒕 and the estimated optimal future value
𝒎𝒎𝒂𝒂𝒎𝒎𝑸𝑸(𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂). These values are affected by learning rate 𝛼𝛼, which determines the step size towards a minimum loss
function for each iteration, and discount factor 𝛾𝛾, which determines how much the agent should consider the calculated
optimal future value into consideration for its next move.

In our research, the Bellman equation is used in the Q-learning model. In the model, the machine assigns the

Q value, which is the expected reward with a higher value being more desirable, to every state-action pair. The Q
values are updated iteratively based on the current state, future states, and potential actions. In Tic-Tac-Toe, the state
is the board position while the action is the game move. At the end of each match, the result is associated with the
move that caused the result. The machine will then work back the game history recursively and update the Q values.
Next, the epsilon-greedy strategy is employed to ensure the agent’s familiarity with all game moves instead of only

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 3

reinforcing Q values that are already high. The epsilon-greedy strategy is a method that balances exploration and
exploitation by agent by choosing the two choices randomly: a random move with probability 1-ε from the Q-table
or a random move with probability ε.

Results and Data Analysis

Through reinforcement learning, the Q-learning algorithm, coded with Python, allows an agent to find the solution
that yields the greatest reward. When the agent is using the epsilon, the agent explores with a random move. During
each move, a reward is collected and the Q-value is generated from a given state and action with the Q-learning
equation. The data will then be stored in the Q-table, where each slot for the Q-table corresponds to a board state. The
discount factor and learning rate affect the convergence of winning/tie rates. By following the policy that yields the
most reward, the machine learns from the Q-table.

As the computer explores the possibilities, its epsilon decreases to encourage the agent to play the optimal
action while ensuring a certain degree of exploration. Using a randomly generated decimal between 0 and 1, the
computer determines whether it plays under the trained policy. The computer will play a random move if the generated
number is within the epsilon value. However, if this generated number is greater than the current epsilon, the algorithm
will be processed, utilizing the Q-learning approach.

For the first one thousand episodes, we set the epsilon to 0.9 to allow the computer to generate random moves,
producing enough data sets to be stored in the Q-table; the table is updated with the Bellman equation. We then
decrease the epsilon by ((1-epsilon)*10)/episodes to reduce the rate of exploration of the board, allowing the agent to
have a greater possibility to play with optimal policy. By evaluating the value the Q-learning equation computed, the
algorithm enables the computer to play strategically by following the policy that yields the greatest rewards.

Similarly, the opponent in the game was coded with the same Q-learning algorithm to yield greater results.
However, different from the player, the opponent does not update its Q-table during the plays. The opponent only
updates its Q-table to the agent’s Q-table once every 1000 episodes to increase the efficiency of the agent’s policy.

Figure 2. After playing 300,000 episodes, the agent will win on an average of 75%, break/tie for about 15%, and lose
10% of games played

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 4

Conclusion

Our research has shown that a learning agent, via reinforcement learning, can master playing simple games such as
Tic-Tac-Toe with a high winning rate after receiving a sufficient amount of training. Throughout our experiment, our
agent has developed its playing strategy by utilizing the Bellman equation and the Q-learning algorithm to recall its
previous moves and discover the optimal Tic-Tac-Toe action. By the result of our experiment, the agent has around a
90% win/tie rate after 300,000 episodes of training. We believe that the winning rate can increase even more to 100%
with a better tuned Q-function and more training episodes.

Suggestions

Future research will focus on improving the machine’s learning strategies, as well as the related winning rate for the
agent. We are looking forward to discovering a strategy to maximize learning without relying on long-term training,
which is more efficient as it will take a much shorter time for machines to complete.

We wish to apply our research regarding the adjustments of the learning rate, decay exploration rates, as well
as their effects on agents' abilities not only on Tic-Tac-Toe but also on similar games that can be advanced with
reinforcement learning. Though the states, actions, and rewards vary by program, the fundamental quality of Q-learn-
ing algorithms remains model-free, and thus the research can be applied to a wide variety of programs, ranging from
games to other fields where credible unsupervised learning is essential to quick operations and exemplary results.
Finance, business, medicine, and industrial robotics are some examples of these fields.

Acknowledgements

I would like to express my deep and sincere gratitude to Benjamin Chang, freshman from John Hopkins University,
and Jeffrey Huang, senior from Pacific American School, for their unwavering support in co-authoring and providing
constructive feedback and reviews.

References

AlphaGo. DeepMind. (n.d.). Retrieved July 20, 2022, from https://deepmind.com/research/case-studies/alphago-the-
story-so-far

Cleanwater Analytics. (2018, January 18). Using Q-learning and deep learning to solve tic-tac-toe (2017 Clearwater
DevCon). YouTube. Retrieved July 20, 2022, from https://www.youtube.com/watch?v=4C133ilFm3Q

Even-Dar, E., & Mansour, Y. (2001). Neural Information Processing Systems. In Proceedings of the 14th
International Conference on Neural Information Processing Systems: Natural and Synthetic. Retrieved July 20,
2022, from https://dl.acm.org/doi/abs/10.5555/2980539.2980734.

Friedrich, C. (2018, July 20). Part 3 - tabular Q learning, a tic tac toe player that gets better and better. Medium.
Retrieved July 20, 2022, from https://medium.com/@carsten.friedrich/part-3-tabular-q-learning-a-tic-tac-toe-player-
that-gets-better-and-better-fa4da4b0892a

Hu, J., & Michael. (2003). Nash Q-Learning for General-Sum Stochastic Games. Journal of Machine Learning
Research. https://doi.org/10.1162/1532443041827880

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 5

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.youtube.com/watch?v=4C133ilFm3Q
https://dl.acm.org/doi/abs/10.5555/2980539.2980734
https://medium.com/@carsten.friedrich/part-3-tabular-q-learning-a-tic-tac-toe-player-that-gets-better-and-better-fa4da4b0892a
https://medium.com/@carsten.friedrich/part-3-tabular-q-learning-a-tic-tac-toe-player-that-gets-better-and-better-fa4da4b0892a
https://doi.org/10.1162/1532443041827880

Morris, F. L., & Jones, C. B. (1984). An early program proof by Alan Turing. IEEE Annals of the History of
Computing, 6(2), 139–143. https://doi.org/10.1109/mahc.1984.10017

Shannon, C. E. (1950). Xxii. programming a computer for playing chess. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 41(314), 256–275. https://doi.org/10.1080/14786445008521796

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of go with deep neural
networks and Tree Search. Nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. The MIT Press.

TORRES.AI, J. (2021, September 24). The bellman equation. Medium. Retrieved July 20, 2022, from
https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7

Watkins, C. (1989). Learning from Delayed Rewards (thesis). Cambridge University, Cambridge.

Watkins, C. J., & Dayan, P. (1992). Technical note. Reinforcement Learning, 55–68.
https://doi.org/10.1007/978-1-4615-3618-5_4

Wunder, M., Littman, M., & Babes-Vroman, M. (2010). International Conference on Machine Learning. In
Proceedings of the 27th International Conference on Machine Learning.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 6

https://doi.org/10.1109/mahc.1984.10017
https://doi.org/10.1080/14786445008521796
https://doi.org/10.1038/nature16961
https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7
https://doi.org/10.1007/978-1-4615-3618-5_4

