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ABSTRACT 
 
The amygdala is important for the perception and expression of emotion. Research on the amygdala has shown that 
its activation through emotional arousal leads to enhanced memory of certain events. Emotional experience is known 
to induce the release of hormones epinephrine and cortisol, which are essential for responding to stressful events. 
These hormones initiate pathways between the amygdala, locus coeruleus and vagus nerve as well as aid in the acti-
vation of the hippocampus, a brain region involved in forming solid memories that can endure the tests of time. 
Through these hormones, the amygdala can instigate long-term potentiation (LTP) and spike-timing dependent plas-
ticity (STPD) through hormone binding and modulation of gamma and theta frequency neuronal oscillations in the 
brain. Oftentimes, memories which are remembered best are emotionally saturated, but the biochemistry responsible 
for this effect is not yet fully understood. This review will analyze and summarize the research of many decades on 
this perplexing topic to hopefully help untangle a small component of the complex and intricate design of the human 
creation. 
 

Introduction 
 
Through the formation of neurons and synaptic connections in the brain, information can be stored. However, because 
our brains cannot handle the constant input from the environment, a lot of this information is discarded. How does the 
brain decide what is kept and what is forgotten? The human body and brain respond to emotion in quite a special way; 
our bodies have many mechanisms which help respond to emotional experiences. Interestingly, emotional arousal has 
a direct relationship with memory. Through the study of the limbic system, evidence points towards the amygdala as 
the modulator of memory consolidation and prioritization. Different mechanisms involving nerves, cell groups, hor-
mones, and receptors form an emotion-induced network which serves to activate the amygdala. Once the amygdala 
has received signals and information from this network, it projects to the hippocampus, an important memory brain 
region. In this way, memories associated with emotion can be prioritized over others, one of many aspects of brain 
function which help determine the relevance of the things we perceive.  

This review will introduce the amygdala as the center of emotion-induced memory formation through studies 
that prove the connection between the effects of emotion on memory performance and the amygdala. Next, the mech-
anisms which serve to activate the amygdala, such as nerve fiber and hormone connections, as well as induce memory 
consolidation in neighboring brain regions will be discussed. Lastly, new information involving the disconnect be-
tween emotions and memory will be introduced, and potential new studies which could utilize this disconnect to 
answer potential questions that haven’t yet been thoroughly addressed will be proposed.  
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The Amygdala mediates emotion-induced memory-enhancement  
 
The amygdala is a part of the limbic system which reacts to the perception of emotions in oneself and others, especially 
emotions related to fear 1-5. Due to its role in emotion processing, scientists believed that the amygdala was responsible 
for an emotion-induced memory-enhancing effect. To prove this, initial trials stimulated lab rats through footshock 
and ultrasound as ways to scare the mice and thus emotionally activate their amygdala 6-9. Once trained, their memory 
was tested with spatial maze puzzles 10 and inhibitory avoidance tasks 11-12. In both cases, mice were shown to have 
enhanced memory of their surroundings which allowed them to improve on spatial mazes and learn to avoid environ-
ments associated with aversive events.  

C-fos is a proto-oncogene which is expressed in neurons following depolarization. Because depolarization 
occurs in active cells, whenever a certain structure has heightened activity, c-fos will be expressed in that area. Thus, 
c-fos densities in the brain can be analyzed to determine which brain regions responded to the fearful stimulus. After 
analysis, scientists were able to prove that aversive stimuli can induce amygdalar activity in the brain 13-14. This proves 
that footshock, other fearful stimuli, and the resulting memory enhancement through the amygdala are connected, but 
does this effect also occur in humans? Because humans and rats are biologically similar, if a redundancy is found in 
humans this will provide more evidence that the amygdala is the key.  

In human studies, test subjects were emotionally aroused with visuals to activate the amygdala. Similar to c-
fos in rats, Positron Emission Tomography (PET) scanning can be used in humans to measure cerebral glucose me-
tabolism in the brain and thus determine which regions are activated by stimuli. It was found through PET that the 
emotional stimuli increased amygdala activity, and this increased activity positively correlated with the strength of 
memory retention after watching an emotional visual 15. Subsequent research produced similar results, with emotional 
arousal enhancing memory consolidation for cognitive skills, wordlists, and college lectures, regardless of type (pleas-
ant or aversive) 16-19.  

In extreme cases, such as with Urbach-Wiethe disease, the amygdala undergoes calcification and damage, 
causing patients to be unable to judge emotions in facial expression 20. Furthermore, patients were unable to remember 
positive and negative pictures and showed memory impairments in selective tests 21-22. Post-traumatic stress disorder 
(PTSD) is an opposite extreme. Intense stress due to trauma is shown to cause abnormally high amygdala activity 23-

24. Victims of PTSD express enhanced memory for traumatizing events, damaged mental health, and emotions such 
as distress, anxiety, and sadness. Both examples show the connection between the amygdala, emotions, and memory: 
emotions cause increased amygdala activity and memory enhancement, while lack of proper amygdala function leads 
to difficulty perceiving and remembering emotional events and information.  
 
Epinephrine and Glucocorticoids require noradrenergic activation to stimulate the amygdala and 
thus mediate an emotion-induced memory enhancing effect 
 
Through multiple studies, scientists have just begun to understand the complex memory processes which the amygdala 
mediates. An initial question which needs to be addressed is how emotional arousal leads to activation of the amygdala. 
To answer this question, three important stress-related hormones must be introduced.  

Responding to stress involves peripheral epinephrine and cortisol (corticosterone in rats). Peripheral epineph-
rine (adrenaline) is a steroid hormone part of the sympathetic nervous system, known for its “fight or flight” response 
25-26. Alpha and beta-adrenergic receptors (also known as adrenoceptors) which bind epinephrine are located in smooth 
muscle cells and adipose tissue throughout the body 27, as well as along certain nerves and neurons connected to the 
brain. Cortisol is a type of glucocorticoid hormone which is controlled by the hypothalamic-pituitary-adrenal (HPA) 
axis 28-29. When cortisol is released, it binds to glucocorticoid (GR) receptors, which are located in the hippocampus 
and amygdala 30-32. Because these two are stress-related hormones, they are useful for analyzing the effects of emo-
tional arousal on brain function.  
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Emotionally saturated experiences, such as during aversive or highly rewarding experiences, cause both cortisol and 
epinephrine to be released from adrenal glands 29. Increased concentrations of epinephrine and cortisol have both been 
proven to activate the amygdala and enhance memory in rats and humans 29, 33-42. By binding to their complementary 
receptors on the amygdala and other memory-forming brain regions, epinephrine and glucocorticoids can influence 
memory consolidation 42-46. In order to do so, they must pass through the blood-brain barrier, a semipermeable wall 
which blocks entrance to the brain 47.  
 
Epinephrine released peripherally activates the amygdala through an indirect pathway 
 
Even in an extremely stressful scenario, peripheral epinephrine is unable to pass through the blood-brain barrier 48-49. 
Because of this, epinephrine must activate the amygdala with a signal. Norepinephrine, a hormone which functions as 
a neurotransmitter in the brain, is our signal molecule. It is produced by neural projections originating from the locus 
coeruleus (LC) and transferred to the amygdala 25, 50. Similar to adrenaline, norepinephrine is capable of binding to 
adrenergic receptors; because these receptors can be found on the amygdala, norepinephrine binding causes amygdala 
activation 10, 12, 44, 47, 51-52.  

Indeed, post-training infusions of norepinephrine and adrenoceptor agonists have been shown to improve 
memory for spatial mazes, inhibitory avoidance, and fear conditioning 10, 53-54. Drugs that block norepinephrine and 
adrenoceptors in the amygdala completely nullify the ability for epinephrine to enhance memory 55-56, and when con-
centrations of epinephrine are depleted, memory deficits are reversed with direct infusion of norepinephrine. Moreo-
ver, LC stimulation increases amygdala firing which has been proven to depend on norepinephrine release 50. This 
provides substantial evidence that norepinephrine is important for epinephrine to contact memory-forming structures, 
but epinephrine must first activate the LC to produce norepinephrine and activate the amygdala. Because epinephrine 
cannot pass through the blood-brain barrier, another mechanism must be used to activate the LC first. This is where 
the vagus nerve comes into play.  
 
The vagus nerve induces release of norepinephrine into the amygdala 

 
Known as the tenth cranial nerve, the vagus nerve is part of the parasympathetic nervous system, responsible for 
lowering heart and breathing rate after a stressful event. Following epinephrine administration, increased neural im-
pulses have been detected along the vagus nerve 57 and when β-adrenergic receptors on the vagus nerve were blocked, 
excitatory activity in the vagus nerve was not observed. This shows that epinephrine binding increases vagus nerve 
activity. However, with adrenoceptors located throughout the body, how can it be determined if the vagus nerve is 
one of the essential pathways to the brain? Through three separate tests, Chen and Williams 58 proved that this is true. 

In the first test, rats were implanted with vagal nerve electrodes and placed in a long box. 10 sugar pellets (a 
food reward) were placed at the end of the box as well as three hurdles throughout the course to ensure that rats would 
have to put in effort to reach the reward. During training, four different rat groups were given either sham or vagus 
nerve stimulation (VNS) and either a reduction in sugar pellets from 10 to 1 (reward shift) or no change. In this case, 
the emotion which scientists were trying to induce in the rats was frustration and loss of motivation due to reduction 
in reward, which could be measured by the latency of the rats to consume the pellet. After training, decreased amounts 
of pellets caused increased latency to jump over the hurdles and consume the reward, even without VNS. While 
memory retention for this reward shift extended for as long as 7 days after VNS training, this did not occur in sham 
stimulated rats. 

In the second test, electrophysiology and microdialysis was used to record neural impulses of vagal fibers 
and concentrations of norepinephrine in the amygdala. During the test, rats were split into three experimental and four 
control groups. In experimental groups, epinephrine injections were followed by sotalol after 60 minutes. In control 
groups, saline was administered 60 minutes after injections of sotalol. Post-epinephrine injections caused consistent 
increases in vagal firing and norepinephrine concentration which remained statistically significant above baseline. 
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Once sotalol was injected, experimental groups decreased in vagal nerve firing, with a higher concentration of sotalol 
reducing activity by 50% relative to baseline at the end of recording, while norepinephrine levels remained relatively 
constant. In control groups, significant decreases in vagal nerve firing and norepinephrine were observed, but values 
never rose above baseline.  

In the final test, immunohistochemistry was used to label c-fos (similar to aversive stimuli testing in section 
1) and DBH, an enzyme used for norepinephrine synthesis. Electrodes which stimulated the vagus nerve in rats caused 
increased Fos activity in the amygdala and NTS, a channel which connects the vagus nerve to the LC. Elevated DBH 
and Fos levels were also recorded in the LC, indicating that vagus nerve stimulation increases norepinephrine activity 
and release. These findings both support the claims that epinephrine increases vagal nerve firing 57 and that the vagus 
nerve can activate the amygdala with norepinephrine through a synaptic connection with the LC. Their results are also 
corroborated by studies done by many others 59-64. Thus, the epinephrine pathway consists of epinephrine to the vagus 
nerve, the activation of the LC, and production of norepinephrine which is carried to the amygdala. 
 
Glucocorticoids require norepinephrine to induce direct activation of the amygdala  
 
Unlike epinephrine, cortisol is capable of passing through the blood-brain barrier 28, allowing cortisol easy access to 
GR receptors on many brain regions, such as the amygdala. Despite this, glucocorticoids must rely on the noradren-
ergic system in order to affect memory storage 65-66. To demonstrate this, Roozendaal et al. 67 experimented with cyclic 
AMP (cAMP), protein kinase (PKA), adrenoceptors, and GRs to find a connection between glucocorticoids, norepi-
nephrine, and the amygdala. They inhibited and activated certain pathways to observe the effect on inhibitory avoid-
ance task performance in rats. In the study, rats received either β-adrenoceptor antagonist atenolol, α-adrenoceptor 
antagonist prazosin, or cAMP-dependent PKA inhibitor Rp-cAMPS into the amygdala followed by GR agonist RU 
28362 posttraining. RU 28362-induced retention enhancement was blocked by Rp-cAMPS and atenolol, but not 
prazosin. This shows that GR activation of the amygdala requires cAMP production and norepinephrine binding to β-
adrenoceptors. Next, rats were given GR antagonist RU 38486 followed by α-adrenoceptor activation or a dose of 
clenbuterol, a β-adrenoceptor agonist. RU 38486 blocked retention enhancement induced by α-adrenoceptors and 
impaired the effect of posttraining clenbuterol. Additionally, clenbuterol-induced enhancement of retention was at-
tenuated by prazosin infusions, indicating that β-adrenoceptors which help the GRs activate the amygdala are reliant 
on α-adrenoceptor activation by norepinephrine.  

Taken together, the α / β-adrenoceptor-cAMP/PKA pathway is quite complex: norepinephrine must first bind 
to alpha and β-adrenoceptors, with α-adrenoceptors modulating β-adrenoceptor activation. Once β-adrenoceptors are 
activated, cAMP is produced, initiating PKA phosphorylation. Finally, PKA signaling leads to amygdala activation 
and memory enhancement. This proves that the β-adrenoceptor-cAMP/PKA pathway must be active but that gluco-
corticoid binding to GRs is also necessary 52, 68. In a second test, Roozendaal et al. 66 used yohimbine, a drug which 
increases norepinephrine levels in the brain, and got similar results. When yohimbine was administered with corti-
costerone, retention of objects was enhanced in rats 66, but memory-enhancing effects were not apparent when yohim-
bine was administered without corticosterone. Yohimbine also increases levels of phosphorylated CREB (pCREB), a 
protein which is activated by norepinephrine binding on the amygdala 69. Although corticosterone or yohimbine ad-
ministered alone did not affect pCREB reactivity, corticosterone and yohimbine administered together significantly 
increased pCREB activity in the amygdala 69-70. This shows that even though yohimbine increases norepinephrine 
levels, norepinephrine cannot increase pCREB reactivity or activate the amygdala without corticosterone. Thus, the 
glucocorticoid pathway involves binding to and activation of the amygdala in tandem with norepinephrine release and 
binding to β- and α-adrenoceptors. Overall, evidence indicates that norepinephrine, epinephrine, and corticosterone 
work together to activate the amygdala and cause memory enhancement to occur. Epinephrine induces the release of 
norepinephrine through the vagus nerve and LC, which assists glucocorticoids in amygdala activation by binding to 
alpha and β-adrenoceptors on the amygdala surface. In this way, three hormones respond to emotional arousal and 
initiate complex memory storage and LTP pathways. 
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The amygdala projects to the hippocampus to enhance memory consolidation/re-
tention 

 
The amygdala does not store or enhance memories by itself; instead, it modulates memory consolidation processes 
through the hippocampus, another brain region from the limbic system. The hippocampus is essential for the consoli-
dation of short-term memories into the long-term and the formation of declarative and spatial memories in the brain 
71-74. Changes in neuroplasticity, known as long-term potentiation (LTP), help form new synapses between hippocam-
pal neurons so information of past events can be stored 75-76 and spatial and contextual information which is recollected 
from our past perceptions can be processed. This is shown by the improvements in inhibitory avoidance and spatial 
maze tasks in rodents, retention of visuals, word lists, skills, etc. in humans, as well as famous tests such as Pavlov’s 
dogs 77-78. In these cases, emotion caused neuroplastic changes through a possibly amygdala-initiated pathway.  

Physiology and anatomy have confirmed that the amygdala is connected to the hippocampus through a chan-
nel called the perforant pathway (PP) 79-80. The PP extends to all fields of the hippocampus, such as the CA regions 
and dentate gyrus (DG), which forms episodic memories. Because the amygdala modulates memory consolidation, it 
is likely that the hippocampus is involved in this process due to its predominant role in memory. However, whether 
or not emotional-induced amygdala activation can increase LTP in the hippocampus must be determined. 

To prove that amygdala activation causes LTP in the hippocampus, Akirav and Levin 81 primed the amygdala 
to see its effects on LTP and population spike (PS) and excitatory postsynaptic potentials (EPSP), two signals of 
efficient synaptic transmission and LTP 81, in the DG. In addition, field potentials following high-frequency stimula-
tion (HFS) on the PP were recorded to determine temporal effects. Amygdala priming significantly increased EPSP 
and LTP in the DG of rats, and HFS to the PP produced similar results.  

In another study by Akirav and Levin 82, rats were held underwater with a metal net to induce fear and stress. 
Afterwards, they received tetanic stimulation (priming) to the amygdala and HFS to the PP. Priming to the amygdala 
significantly increased LTP and HFS significantly increased EPSP, but amygdala priming increased EPSP and LTP 
much more than HFS 82. When amygdala neurons were blocked, LTP was attenuated in the hippocampus 83. The results 
of these studies provide additional evidence that the amygdala induces changes in neuroplasticity and LTP in the 
hippocampus 84-89.  
 
The amygdala modulates memory by initiating memory processes in the hippocampus 
 
Understanding the mechanisms behind the interaction between the amygdala and hippocampus will help to elucidate 
the memory-consolidation process. There are two ways that the amygdala has been shown to induce LTP in the hip-
pocampus to prioritize memory consolidation of certain perceptions -- priming of the hippocampus for the reception 
of hormones such as norepinephrine and glucocorticoids, and coordination of oscillatory theta and gamma waves. 
 
The amygdala potentiates neuroplastic changes in the hippocampus by priming it for emotion-
induced release of norepinephrine and glucocorticoids 

 
To influence memory formation, hormones norepinephrine and corticosterone have been shown to bind to and activate 
the hippocampus. Norepinephrine has been found to increase the magnitude and duration of long-term synaptic po-
tentiation in the CA3 region of the hippocampus during HFS stimulation of rat hippocampal slices, and beta-adrenergic 
agonists such as isoproterenol produced similar results, while antagonists such as propranolol or timolol blocked hip-
pocampal LTP 90. Even propranolol applied to the hippocampus shortly after induction of LTP from the amygdala 
completely abolished memory effects of LTP 91. 
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The hippocampus contains a substantial number of GRs. Glucocorticoids which are released in response to emotional 
arousal and bind to the hippocampal GRs have been shown to cause increased hippocampal LTP and primed burst 
potentiation (PBP) 92-96, a long-term increase in PS and EPSP which occurs from shifts in electrical potential of the 
hippocampal CA1 region. Increases in PBP thus acts as an indicator of signal transmission and activity in the hippo-
campus, which is induced by glucocorticoid binding.  

Norepinephrine and corticosterone can be depleted with DSP-4 and metyrapone (Met), respectively. By re-
moving norepinephrine and/or corticosterone, scientists could observe changes in hippocampal LTP which indicate 
the necessity of stress hormones. Without amygdala priming, DSP-4, Met, and 5-HT were not significantly different 
from control LTP groups. This makes sense because the amygdala mediates norepinephrine and glucocorticoid re-
lease.  

However, once the amygdala was primed, DSP-4 and Met caused decreased EPSP in the hippocampus, while 
control groups had much higher EPSP levels. This shows that when norepinephrine and glucocorticoids are depleted, 
the hippocampus has decreased signaling and activity, attenuating memory consolidation 97-99. Control tests did not 
alter hormone levels and had higher EPSP, which makes sense because the amygdala increases LTP in the hippocam-
pus.  

When norepinephrine or glucocorticoids were depleted, signaling and activity in the hippocampus decreased. 
EPSP/LTP were significantly lower in depleted groups compared to control groups that had natural hormone levels. 
Thus, the hippocampus relies on norepinephrine100 and glucocorticoids to potentiate LTP once receiving memory 
signals from the amygdala. 
 
Synchronous hippocampal theta-gamma oscillations comodulate memory consolidation 

 
Neurons naturally oscillate at unique frequencies when interacting and forming connections with other neurons 101; 
oscillation helps to support synaptic plasticity by coordinating presynaptic neurotransmitter release with postsynaptic 
depolarization (known as spike timing) 101-102. When neurons oscillate within a certain time window (10-20ms), syn-
chronized activity can induce LTP. This form of LTP which is dependent on the precise timing of spike activity in 
neurons is called spike-timing dependent plasticity (STPD) 103.  

Two important oscillatory waves expressed in the hippocampus are the theta (6-12Hz) and gamma (30-90Hz) 
waves, with gamma frequencies split into low gamma (~30-55Hz) and mid-frequency gamma (~55-90Hz) 104-105. Theta 
waves have been shown to modulate gamma waves, with the cycle of low gamma oscillation always at a 5:1 ratio and 
mid gamma always at a 9:1 ratio to the rhythm of the theta cycle. Additionally, gamma power (increases depending 
on sensory drive) in low and mid gamma frequencies is phase modulated by theta waves, which means theta waves 
encode important information by causing changes in phases of the gamma cycle 105. Phase-phase (P-P) coupling is the 
synchronization of phase values between oscillations. Comparisons of phase oscillations have revealed correlations 
between theta and gamma waves106, which has been suggested to control spike patterns to induce STDP. 

In an experiment by Trimper et al. 107, spiking and local field potentials (LFP) were measured simultaneously 
in three major regions of the hippocampus: the DG, CA3, and the CA1 while rats performed a novel object recognition 
memory task. Scientists were hoping to untangle the dynamics of gamma / theta wave interaction and find correlations 
with cognition and behavior. 

During exploration of the novel object, there was increased slow gamma coherence between the DQ and 
CA3, and between the CA3 and CA1, which was highest during the falling slope and trough of the theta cycle and 
smallest during rising slope and peak 108-109. The magnitude of theta-phase modulations was also calculated, and theta 
waves were found to phase modulate slow gamma power in all three brain regions. Previous studies have shown that 
regions such as the CA3 and CA1 synchronize in low gamma frequencies 104, 110, so the data from the object recognition 
test likely reflects genuine theta-gamma synchrony. Regardless of behavioral state, all three brain regions were phase-
aligned to the theta and slow gamma waves 107. Due to spike-timing being phase aligned to theta and gamma oscilla-
tions, changes in STPD could potentially occur.  
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To prove that hippocampal oscillations could affect associative memory for the novel object encounters, rats 
performed an object-location recognition memory task where each rat ran laps on a track while exploring novel ob-
jects. Rats are known to prefer novelty, so decreased exploration time can be interpreted as retention of the objects. 
Exploration time decreased significantly when rats discovered the same objects again on the second lap, indicating 
memory formation for that object. While the rats were running laps, slow gamma power and synchrony was found to 
be highest during novel object exploration and lowest during repeated object exploration, which lead to enhancement 
or attenuation of memory, respectively. This effect was present in both the DQ-CA3 connection and the CA3-CA1 
connection, indicating the formation of STDP through the oscillations of low gamma waves.  

In a spatial maze task by Shirvalker et al. 111, theta-gamma comodulation / power correlation (TGC) and 
synchronization were found to be significantly higher in rats that demonstrated good memory on all trials, while 
reduced TGC increased the probability of memory failure. Other tests observed similar effects when forming memo-
ries in humans 112-113, monkeys 114, and rats 104, 109, 115-117. In sum, theta-gamma comodulation acts as a neural code 118: 
slow wave gamma oscillations help to synchronize spike timing in different regions of the hippocampus, and these 
slow wave gamma oscillations are mediated by theta waves, which phase modulate gamma power and frequency. This 
suggests that theta waves help the hippocampus interact with other brain regions to integrate non-memory related 
information 

During an object memory test, brief electrical stimulation was found to elicit low gamma synchrony between 
the CA3 and CA1. Rats that were electrically shocked and elicited low gamma synchrony had enhanced memory 
consolidation for specific object encounters 104, 119. Additionally, CA3 neuron action potentials and spiking were found 
to be coordinated with downstream CA1 LFPs following BLA-induced gamma synchrony in the hippocampus, indi-
cating that the low gamma oscillations were responsible for changes in LTP and memory consolidation. This supports 
the previous hypothesis that CA3-CA1 synchronous oscillations enhance memory consolidation through changes in 
STDP, but also brings up evidence for an amygdala-mediated change in gamma waves. 

When mice underwent auditory Pavlovian fear-conditioning, increased theta coupling was recorded specifi-
cally between the CA1 and amygdala, which led to increased fear memory consolidation in rats 120-122. In a Pavlovian 
reward test, rats were found to have greater coherent theta oscillations between the amygdala theta phase and hippo-
campal CA1 gamma phase which led to higher expectations of future reward, indicating memory consolidation of the 
reward and stimulus 123. This suggests that the amygdala can induce low gamma synchrony through theta-wave cross-
structure coupling with the CA1 120. In a more recent study 124, optogenetic stimulation amygdala neurons were found 
to elicit theta-modulated gamma oscillations in the CA1, but only when amygdala stimulation included theta and 
gamma frequencies. This supports the claim that the amygdala can induce theta-gamma wave synchrony to benefit 
memory. 
 

Conclusion 
 
Through thorough research, we now have a much greater knowledge and understanding of the mechanisms, networks, 
and pathways which connect emotion, the amygdala, and memory. Different characters play a part in this memory 
journey, all eventually allowing the amygdala to form a connection with the hippocampus and send in signals and 
encoded neural messages to activate memory consolidation processes for an emotionally arousing experience. Yet 
despite our newest insights in this field of science, the mystery of the human body has not been fully solved. There 
are many missing pieces of the information we currently have that have yet to be discovered. 
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