
Predicting Formal Verification Resource Needs
(Computation Time and Memory) through Machine
Learning

Jason Twigg1, Erik Torkelson1 and Nazanin Mansouri#

1Shiley School of Engineering, University of Portland, OR, USA
#Advisor

ABSTRACT

This paper presents an application of Machine Learning (ML) for estimating the resource requirements (time and
memory) for formal verification of digital systems. Formal Verification has become the main bottleneck in the digital
design process. As designs grow in size, the verification cost exponentially increases. Some verification efforts fail
when the cost of the verification is too large. The most common failures are due to state explosion problem when
memory runs out or when verification does not meet time constraints and cannot complete within the given time. For
this reason, having an estimation of the computation resources beforehand can be valuable. In this work, a neural
network is used to predict the formal verification cost for a diverse collection of designs. Experiments with a large
variety of Verilog benchmarks have been conducted. In each experiment, the specific features of a given design are
extracted, the design is synthesized and formally verified, and the verification time and memory usage are recorded.
The neural network then uses this data to learn the correlation between design features and verification cost. A genetic
algorithm experimented with different neural network designs to determine an appropriate framework. The experi-
mental results confirm that the developed neural network can predict the resource requirements and memory usage
with reasonable accuracy.

Introduction

Formal Verification is an integral part of most digital design processes. Advances in the field, and the availability of
more computing power and memory have made the verification of significantly more complex designs possible. How-
ever, as designs grow over time, the required verification resources grow exponentially, and the state explosion prob-
lem remains one of the main challenges. Hence, it is becoming critical to predict the verification cost in advance to
avoid losing precious time and scarce resources due to failure. The ideas presented in this paper are of great value for
this reason and can be used to predict the required verification resources with reasonable accuracy prior to the verifi-
cation effort, so that computing power may be budgeted and allocated accordingly. While this has not been possible
through conventional design automation practices, the application of machine learning (ML) has the hope of offering
a solution to this problem.

In what follows we present a discussion on how machine learning was applied to estimate the formal verifi-
cation cost. A neural network learns the relationship between input (design features) and output (verification time and
verification memory usage) values during training so that it can predict the output given a set of inputs later. A col-
lection of Verilog benchmarks is synthesized and corresponding netlists are generated for each design. Specific design
features that are considered important (such as the number of different types of gates, wire count, number of inputs,
...) are extracted from the benchmarks. The input values to the neural network correspond to the extracted data from
the synthesized netlists. The output data is collected from the formal verification tool after verification of the designs.
It consists of the time and memory usage during the verification process. Using this input and output training data, the

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 1

neural network determines the correlation between the features of a design and the verification cost. This neural net-
work can then be used to predict the time taken and memory requirement for the future verification processes with
reasonable accuracy. In what follows we will discuss the details of our approach and our experimental set up.

Hypothesis

Neural Networks are unparalleled at determining patterns in data where they exist, even if the patterns present are
extremely abstract and incomprehensible. It would be sensible to apply such a technology to any field where predicting
something from given data will be useful. The time required and memory used to verify a hardware design is a perfect
example of a useful prediction. A correctly designed neural network should be able to predict those variables with
reasonable accuracy given an adequate data sample.

Related Work

In recent years, several researchers in the field of Electronic Design Automation (EDA) have considered the promise
of ML, particularly for solving logic and physical synthesis problems. However, at the time of writing this paper, not
much research exists that parallels our work to address the problem at hand.

In [1] El Mandouh and Wassal explain a process for predicting the time it takes for formal verification to
succeed. Linear regression machine learning was used to develop this prediction model. In contrast to their approach,
this paper proposes using a neural network designed by a genetic algorithm which provides the ability to learn more
abstract features than a differentiable function would allow. This method was chosen in hope that the performance of
the model would improve with the added flexibility to learn more complex and high-level patterns.

In [2] the authors propose the utilization of supervised machine learning classification techniques to guide
the orchestration step by predicting the formal engines that should be assigned to a design property. In comparison to
our work that targets resource estimation, they focus on scheduling of the formal engines to optimize the resource
usage.

In [3], the authors describe the issues of starting formal verification after the register-transfer level (RTL)
description. The authors proposed a new approach to identify hard-to-verify logic early. While this method wasn't
used in this paper, the methodology and description of the issues with formal verification provided much a much
needed base for this paper.

The authors in [4] present a genetic algorithm method that evolves neural network architectures for specific
tasks. This concept is used in this paper to design a neural network model for resource estimation that we believe
outperforms a default model.

Methods

Machine learning and neural networks in particular require a substantial amount of training data to work well with
new unseen data. Using machine learning in the area of digital design verification requires thousands of design exam-
ples (behavioral Verilog) to develop a network that will function properly. In this research, an assortment of standard
Verilog benchmarks are used as training data for the neural network. This training data contains different types of
designs that prevent the network from over-learning. If all the hardware designs had similar attributes that are extracted
to create training data, the network would probably learn these relationships quicker, but it wouldn’t be useful to learn
since it wouldn’t apply to any other slightly different designs. Therefore, choosing designs that are fundamentally
different by covering many of the possible design methods and types of logic implementations will allow for a more
general relationship between designs and verification cost to be learned.

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 2

Technical Approach

This section describes our technical approach and experiments that were conducted in several
steps:

Benchmark Collection:
A variety of Verilog design benchmarks taken from the open source resources available online were used as training
data. Benchmarks are open source Verilog models of digital circuits provided by companies, individuals and univer-
sities for research and development use. They allow a more meaningful comparison of results, as experiments are
performed on the same standard designs. Benchmarks are great for training as they provide various design types and
cover most of the possible uses of Verilog in the design process. The benchmarks we used come from different sources
so they were designed in different ways and for widely different applications. On the downside, finding a multitude
of benchmarks proved to be a struggle. Some needed to be modified slightly to work with the synthesis tools and
methods used in this research.

Design Generation:
Even though this exercise did not succeed in providing us with more design examples, it proved to be valuable as a
learning experience. To supplement the benchmarks, a script in python was developed to automatically generate very
large design examples. It took master design files, changed parameters and variables, and merged design files. This
method created thousands of designs rather quickly. The disadvantage of using this approach was that the designs had
similar characteristics despite efforts to increase variety, and did improve learning. Consequently, we opted for run-
ning the experiments without the generated designs. This method was ceased so that only more realistic designs would
be used in the model's learning process.

Synthesis:
The Synopsys Suite's Design Compiler [5], was used for the synthesis process in this research. Synthesis generates
low level implementation of digital designs (as netlists) from their specifications given as high-level descriptions (e.g.
behavioral Verilog). Netlists consists of gates and their interconnection (wires) in this implementation of the design.
The synthesis process itself can be quite time consuming similar to verification. Given a high-level design as specifi-
cation, a library of resources and a set of constraints, the tool must create a netlist (implementation at a lower level)
from the components in the synthesis library while satisfying the constraints. This netlist is very important for the
following verification process.

Verification:
Verification determines if two different implementations of a digital design have the same functionality. Many formal
and simulation-based tools are used for functional verification. In this work, we used Formality, the formal verification
tool from Synopsys [6]. Verification is critical in ensuring that the high-level designs have been correctly implemented
at the logic level and lower. The process of verification becomes very resource intensive as designs grow in size and
complexity. In this project, the results of verification along with how long it took and the memory it used are written
to an output log to be extracted as data for the ML engine in the next step.

Data Extraction:
This step in the process analyzes the output logs from formal verification. The files are parsed to acquire the time
spent and memory used for verification of each design automatically in a python script. The extraction script reads in
the output logs from the verification and saves them as data for the model to be trained on. Then testing and training
is split apart and kept separate for accurate testing.

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 3

In addition, various elements of each design are measured and extracted to be used as input training and
testing data for the neural network. The elements are extracted from the synthesized netlist file. Each input is a sum-
mation of the following features from the netlist: inputs, outputs, wires, and all used gates and digital elements. The
similar gates were grouped into similar categories, based on their function and number of inputs. This grouping en-
sured that there was a reasonably small number of inputs for the model to train on.

Machine Learning:
The machine learning library, Tensorflow [7] was used in this research. Although a higher level API for deep learning
built on top of Tensorflow called TFLearn [8] was more directly used. TFLearn provided the framework to design a
neural network that could run on a GPU using CUDA. This allowed for more focus to go into the data itself and the
neural network design. The neural network was designed in python and training was completed using the data ex-
tracted earlier. This data is used to teach the neural network how to predict the correct verification time and memory.

Genetic Algorithm Details

A genetic algorithm is a useful tool to solve optimization problems. They are part of the super-set of evolutionary
algorithms. Genetic algorithms attempt to simulate the process of natural selection that takes place in the real world
for different species. They work by artificially simulating chromosomal crossover, the mutation of genes, and the
selection of which species survive to the next generation (Figure 1). Through this simulation, a population of chromo-
somes that have ever increasing fitness scores and different designs is created over many generations. Ideally the
genetic algorithm will determine good combinations of genes that are a decent solution to the given optimization
problem.

A genetic algorithm is used in this research to determine good parameters for the neural network design.

Neural networks have many different features that all affect how they will function. These need to be chosen with care
so that the network model will perform well for a specific application.

A genetic algorithm would be able to optimize the neural network to perform well with the given data and
regression task. It has the ability to determine the following items in the neural network model:

• Number of Layers
• Number of Neurons
• Dropout Percentage
• Activation Function
• Optimization Algorithm
• Learning Rate

Table 1 which follows shows some of the key features in the design of the genetic algorithm. The population size

is the total number of chromosomes tested in each generation. This means there are 40 differently designed neural

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 4

networks being tested each generation. A generation is a round of crossover, mutation, and selection of the next pop-
ulation. The fitness of each chromosome was calculated by taking the average percent error during two tests of its
design. The inverse of each percent error was taken and then normalized with the rest of the scores. Selection was
based on these fitness scores and each score directly corresponded to the percent chance of that chromosome becoming
a parent for that spot in the parent pool.
Overall the genetic algorithm is able to create an optimized neural network that should perform exceptionally with the
given data.

Table 1. Genetic Algorithm Details

Population Size 40
Number of Generations 10
Starting Mutation Rate 10%
Mutation Rate Decay 15% per Generation
Crossover Uniform Crossover
Fitness Function Averaged Error Rate

Neural Network Details

The neural network was designed using the Tensorflow and TFLearn library and API in Python. The data used in the
neural network is read from the output files of the previous scripts and organized into training and testing data. Out of
all the data collected, 90% is used for training and 10% is used for testing. Out of the training data, another 10% is
used for validation to make sure no over-fitting is taking place during the training process. The testing data is used to
check the model with unseen data and check its performance once training is completed. A description of the neural
network originally designed follows in Table 2.

Table 2. Neural Network Originally Designed

Input Layer Size 22
Number of Hidden Layers 4
Output Layer Size 1
Number of Nodes per Layer 64
Activation Function Rectified Linear Unit
Regularizer L2
Dropout Percentage 20%
Output Function Linear
Optimization Algorithm Adam
Learning Rate 0.001

The second iteration of testing used a neural network designed by the genetic algorithm described earlier.

The model of that neural network follows in Table 3.

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 5

Table 3. Neural Network Designed by Genetic Algorithm

Input Layer Size 22
Number of Hidden Layers 3
Output Layer Size 1
Number of Nodes per Layer 256
Activation Function Exponential Linear Unit
Regularizer L2
Dropout Percentage 20%
Output Function Linear
Optimization Algorithm RMSProp
Learning Rate 0.00005

Two copies of the same neural network model are used for the time and memory calculations to give better

accuracy for each. If just one network with two outputs was used, the accuracy would be reduced because each did
not correlate directly. The time and memory taken rely on some similar aspects but ultimately correspond to different
areas.

Figure 2 below shows an example neural network with two hidden layers, three inputs and a single output.
This is different from the network used but the image helps visualize how it functions.

The neural network calculates the output based on the input values. Each arrow shown in Figure 2 has an
associated weight which is a value that the network changes as it learns. In fact, the machine learning process really
is just the network changing all the different weights so that the outputs it predicts improve over time. This is done
with a back propagation algorithm. The input to each node in a layer is just the weight of the incoming arrow multiplied
by the output of the node it came from. This is simplified to matrix multiplication which is why it is so simple and
fast to use a neural network after training has taken place. One just multiplies the inputs by weights and passes the
values into the corresponding activation functions.

Figure 2. Neural Network Example Image

Results

Overall, the methodology described worked well. Once the training data is collected, the automated synthesis process
can begin. Although this work is technology independent, for a practical approach, the computer to create the input
data and run the genetic algorithm had the following specs. Intel(R) Core(N) i7-7700HQ CPU @ 2.80 GHz, 16 GB
of ram. With the benchmark sized described in this paper, the training of the neural network can be done on any

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 6

modern personal computer in under an hour. The original neural network, after 20,000 epochs, has a 20.92% average
error on time used and a 2.5% average error on memory usage. The neural network predicted the time required for
verification on the testing data with a lower 14.22% error and memory usage with 1.57% error after 20,000 epochs of
training.

Discussion

The error presented in the results was based on testing data which the neural network had never seen before. The
testing data was intentionally removed from the overall data sample before training. This allowed for accurate testing
after the network had finished learning to prove that it actually functioned properly. The implications of these findings
are quite great.

This same machine learning process could be used to predict other useful data such as the time taken and
memory used during synthesis, power usage of a design, layout size and transistor count to name a few. Anytime there
is a feature that has some correlation to the design, machine learning could be used to predict information about that
feature.

Our hypothesis was proved correct since the neural network was able to learn a correlation between the design
and verification time. Error percentages below 5% are low enough that one could say that the neural network did in
fact learn.

It should be cautioned that these results were for a smaller data set than originally hoped. Ideally, the neural
network training data would have consisted of 10,000+ different designs and corresponding verification cost infor-
mation. However, it is hard to have access to such a large bank of benchmarks in an academic setting, and as discussed
earlier, automatic generation of designs for training proved to be unsuccessful. There may have been some over-
learning present with such a small data sample of only 500 benchmark files. Precautions were taken to avoid this and
it was still able to work with new data that the network had never seen before.

Future Directions

There are many possibilities to improve this process. This is just one of the many uses of machine learning to assist
with automating the design process. Machine learning has great potential to drastically make the design process
quicker and more efficient.

In future work, different parts of the design process can be automated by machine learning. This includes,
but is not limited to, formal verification and synthesis. Instead of estimating the amount of resources needed for veri-
fication, machine learning can fight the huge increase in resources needed to verify designs. Machine learning can
help identify red flags in design verification and speed up current software programs. This concept can also be used
to help with synthesis of Verilog code. With machine learning, synthesis tools have the potential to simplify designs
in ways that was not imaginable before.

Improvements can also be made to this specific method for predicting verification cost. Neural network mod-
els can be improved with a larger number of more diverse training data. Having access to more designs would improve
the accuracy of this model. There is also opportunity for improvement in the selection of input data. Different input
data could have a drastic effect on the neural network. Extracting more design features and taking out unnecessary
ones could help the efficiency and result of the network.

Currently, we are also experimenting with applications of machine learning for solving other digital synthesis
and optimization problems.

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 7

References

[1] A. G. W. Eman M. Elmandouh, "Estimation of Formal Verification Cost Using Regressing Machine

Learning," in IEEE International High Level Design Validation and Test Workshop (HLDVT), Santa Cruz,
CA, 2016.

[2] A. G. W. Eman M. Elmandouh, "Guiding Formal Verification Orchestration Using Machine Learning
Methods," in ACM Transactions on Design Automation of Electronic Systems (TODAES), Volume 23 Issue 5,
2018.

[3] M. T. M. M. D. R. D. J. G. a. D. E. S. C Richard Ho, "Early formal verification of conditional coverage points
to indentify intrinsically hard-to-verify logic," in 45th Annual Design Automation Conference, 2008.

[4] G. F. M. a. P. M. T. a. S. U. Hegde, "Designing Neural Networks using Genetic Algorithms," in International
Conference on Genetic Algorithms, 1989.

[5] "Synopsys Design Compiler: RTL Synthesis," in https://www.synopsys.com/support/training/rtl-
synthesis/design-compiler-rtl-synthesis.html.

[6] "Synopsys Formality," in https://www.synopsys.com/implementation-and-signoff/signoff/formality.html.

[7] "Tensorflow: An Open Source Machine Learning Framework for Everyone," in https://www.tensorflow.org/.

[8] "TFLearn: Deep learning library featuring a higher-level API for TensorFlow," in http://tflearn.org/.

[9] T. Parr, "The Definitive ANTLR 4 Reference", Pragmatic Bookshelf, 2013.

[10] D. K. D. a. R. Sanyal, "Semi-automatic generation of UML models from natural language requirements," in
ISEC '11: Proceedings of the 4th India Software Engineering Conference, February 2011 .

[11] B. T. a. R. K. Hammond Pearce, "DAVE: Deriving Automatically Verilog from English," in MLCAD '20:
Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, November 2020.

[12] C. B. H. a. I. G. Harris, "GLAsT: Learning formal grammars to translate natural language specifications into
hardware assertions," in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016.

Volume 10 Issue 4 (2021)

ISSN: 2167-1907 www.JSR.org 8

