Understanding Quantum Key Distribution: The Role of Entanglement in Keeping Information Safe

Authors

  • Lara Kawle Woodbridge Academy Magnet School
  • Monica Sava Gifted Gabber
  • Kay Diaz Cebu Normal University
  • Jothsna Kethar Gifted Gabber

DOI:

https://doi.org/10.47611/jsrhs.v14i1.8895

Keywords:

Quantum entanglement, Quantum cryptography, Quantum Key Distribution, Secure communication

Abstract

In the growing digital age, where information flows seamlessly across the globe, data security has emerged as a critical concern for individuals, businesses, and governments alike. As modern society faces these challenges, the dynamic mechanisms of quantum mechanics offer transformative potential—not only in breaking complex computational barriers but also in enhancing the technological landscape with unprecedented solutions for secure communication and groundbreaking discoveries. As a subset of quantum computing, quantum entanglement is a complex phenomenon that utilizes entangled qubits to offer unique advantages, such as error resiliency and faster computational abilities. With the help of entanglement and qubits, two entangled, indistinguishable particles can be linked even at large distances. Not only does quantum entanglement provide profound opportunities for the future in dynamic computational powers, but it also provides promising results for its implication in Quantum Key Distribution (QKD). With the help of quantum entanglement, eavesdropping over network channels will disrupt a qubit’s entangled state and thus alert of possible unauthorized access as part of QKD. This paper will discuss the relationship of quantum entanglement to QKD, QKD protocols currently using quantum entanglement, the advantages and disadvantages of entanglement-based QKD, and the current research directions for entanglement-based QKD protocols.

Downloads

Download data is not yet available.

Author Biography

Kay Diaz, Cebu Normal University

Master of Arts 

References or Bibliography

(2022). Distance Based Security using Quantum Entanglement:a survey. doi: 10.1109/icccnt54827.2022.9984468

A Guide To Quantum Key Distribution And Its Security Benefits. (2024, September 10). Quantum Zeitgeist. https://quantumzeitgeist.com/a-guide-to-quantum-key-distribution-and-its-security-benefits/

Abu-Shaqra, B. (2024, February 21). Using Asymmetric Keys. Www.linkedin.com. https://www.linkedin.com/pulse/using-asymmetric-keys-baha-abu-shaqra-phd-dti-uottawa--khtjf

Al-Shabi, M. A. (2019). A Survey on Symmetric and Asymmetric Cryptography Algorithms in information Security. International Journal of Scientific and Research Publications (IJSRP), 9(3), p8779. https://doi.org/10.29322/ijsrp.9.03.2019.p8779

Bhanuka, R. (2021, July 31). Symmetric-Key Cryptography (Private Key Encryption). Medium. https://medium.com/@rajithabhanuka/symmetric-key-cryptography-private-key-encryption-3edbaed70e4a

Brahim, Ouchao. (2023). Quantum Cryptography Simulation of Entanglement and Quantum Teleportation. doi: 10.3390/cmsf2023006008

C., Dumps. (2022). Pre-established entanglement distribution algorithm in quantum networks. IEEE/OSA Journal of Optical Communications and Networking, 14(12):1020-1020. doi: 10.1364/jocn.465432

Ekert, A. K., Huttner, B., Palma, G. M., & Peres, A. (1994). Eavesdropping on quantum-cryptographical systems. Physical Review A, 50(2), 1047–1056. https://doi.org/10.1103/physreva.50.1047

F.J., Duarte. (2024). Quantum entanglement physics and Bell’s theorem. doi: 10.1364/opticaopen.25954564

Gillis, A. (2022, November). What is Quantum Key Distribution (QKD) and How Does it Work? SearchSecurity. https://www.techtarget.com/searchsecurity/definition/quantum-key-distribution-QKD

Haitjema, M. (2007, December 2). Quantum Key Distribution - QKD. Wustl.edu. https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/

Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). Quantum Cryptography with Entangled Photons. Physical Review Letters, 84(20), 4729–4732. https://doi.org/10.1103/physrevlett.84.4729

Mariani, L., Salatino, L., Attanasio, C., Pagano, S., & Citro, R. (2024). Simulation of an entanglement-based quantum key distribution protocol. The European Physical Journal Plus, 139(7). https://doi.org/10.1140/epjp/s13360-024-05337-2

Md., Ferdous, Ahammed., Mohammad, Ismat, Kadir. (2024). Entanglement and teleportation in quantum key distribution for secure wireless systems. IET quantum communication, doi: 10.1049/qtc2.12092

Mikołaj, Lasota., Olena, Kovalenko., Vladyslav, C., Usenko. (2022). Robustness of entanglement-based discrete- and continuous-variable quantum key distribution against channel noise. doi: 10.48550/arxiv.2308.07007

Moloo, N. (2021, February 28). Understanding Quantum Superposition Through the Schrödinger’s Cat Thought Experiment. Medium. https://studentsxstudents.com/understanding-quantum-superposition-through-the-schr%C3%B6dingers-cat-thought-experiment-d0cea6e13063

Roorkee, Q. C. G., IIT. (2021, September 6). Fundamentals of Quantum Key Distribution — BB84, B92 & E91 protocols. Medium. https://medium.com/@qcgiitr/fundamentals-of-quantum-key-distribution-bb84-b92-e91-protocols-e1373b683ead

Shinde, S., Walke, M., Thole, R., Mishra, R., Kalamkar, M., & Garade, B. (2024). Quantum Cryptography: Mathematical Foundations and Practical Applications for Secure Communication Protocols. Communications on Applied Nonlinear Analysis, 31(3s).

Till, Dolejsky., Erik, Fitzke., Lucas, Bialowons., Maximilian, Tippmann., Oleg, Nikiforov., Thomas, Walther. (2023). Flexible reconfigurable entanglement-based quantum key distribution network. European Physical Journal-special Topics, doi: 10.1140/epjs/s11734-023-00980-9

Trevor, J., Steiner., Maximilian, Shen., Joshua, E., Castro., John, E., Bowers., Galan, Moody. (2023). Continuous entanglement distribution from an AlGaAs-on-insulator microcomb for quantum communications. Optica quantum, 1(2):55-55. doi: 10.1364/opticaq.510032

Wong, B. (2019). ON QUANTUM ENTANGLEMENT. Internal Journal of Automatic Control System, 5(2), 1–7. https://www.researchgate.net/publication/339426925_ON_QUANTUM_ENTANGLEMENT

Wu-Zhen, Li., Chun, Zhou., Yang, Wang., Li, Chen., Renhui, Chen., Zhao-Qi-Zhi, Han., M., Gao., Xiao‐Hua, Wang., Di-Yuan, Zheng., Mengyu, Xie., Yin-Hai, Li., Zhi-Yuan, Zhou., Wan-Su, Bao., Bao-Sen, Shi. (2024). Quantum key distribution based on mid-infrared and telecom band two-color entanglement source. doi: 10.48550/arxiv.2408.07552

Zheshen, Zhang., Chenglong, You., Omar, S., Magaña‐Loaiza., Robert, Fickler., Roberto, de, J., León‐Montiel., Juan, P., Torres., Travis, S., Humble., Shuai, Liu., Xin, Yi., Quntao, Zhuang. (2024). Entanglement-based quantum information technology: a tutorial. Advances in Optics and Photonics, 16(1):60-60. doi: 10.1364/aop.497143

Published

02-28-2024

How to Cite

Kawle, L., Sava, M., Diaz, K., & Kethar, J. (2024). Understanding Quantum Key Distribution: The Role of Entanglement in Keeping Information Safe. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8895

Issue

Section

HS Research Articles