Damage to N-methyl D-aspartate receptors following perinatal hypoxia-ischemia and its relation to schizophrenia
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8894Keywords:
N-methyl d-aspartate receptor, schizophrenia, perinatal hypoxia-ischemiaAbstract
The role of NMDAR hypofunction in schizophrenia has garnered significant attention due to its involvement in cognitive and emotional regulation. Interestingly, recent research reveals a strong correlation between obstetric complications and neuropsychiatric disorders. This review aims to synthesize findings on mechanisms of perinatal hypoxic-ischemic injury and its relevance to NMDAR hypofunction in schizophrenia. Findings regarding the role of NMDAR in memory, cognition, and emotion are explored in conjunction with morphological and functional impacts of perinatal hypoxia on NMDARs and deficits in NMDAR activity observed in schizophrenia. Evidence suggests perinatal hypoxic-ischemic insult disrupts NMDAR activity in cognition and social behavior and contributes to positive, negative, and cognitive symptoms found in schizophrenia, establishing NMDARs as a potential mechanism explaining the link between obstetric complications and neuropsychiatric disorders. Understanding the development of NMDAR dysfunction following perinatal hypoxia offers pathways to early diagnosis and intervention in the development of schizophrenia.
Downloads
References or Bibliography
World Health Organization. (2022, Jan 10). Schizophrenia. Https://www.who.int/news-room/fact-sheets/detail/schizophrenia [1]
Carol Tamminga. (2022). Schizophrenia. MSD MSD Manual Professional Edition. https://www.msdmanuals.com/professional/psychiatric-disorders/schizophrenia-and-related-disorders/schizophrenia [2]
Javitt D. C. (1987). Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. The Hillside journal of clinical psychiatry, 9(1), 12–35. [3]
Olney, J. W., & Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of general psychiatry, 52(12), 998–1007. https://doi.org/10.1001/archpsyc.1995.03950240016004 [4]
Coyle J. T. (1996). The glutamatergic dysfunction hypothesis for schizophrenia. Harvard review of psychiatry, 3(5), 241–253. https://doi.org/10.3109/10673229609017192 [5]
Gordon J. A. (2010). Testing the glutamate hypothesis of schizophrenia. Nature neuroscience, 13(1), 2–4. https://doi.org/10.1038/nn0110-2 [6]
Astori, S., Pawlak, V., & Köhr, G. (2010). Spike-timing-dependent plasticity in hippocampal CA3 neurons. The Journal of physiology, 588(Pt 22), 4475–4488. https://doi.org/10.1113/jphysiol.2010.198366 [7]
Harris, E. W., Ganong, A. H., & Cotman, C. W. (1984). Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain research, 323(1), 132–137. https://doi.org/10.1016/0006-8993(84)90275-0 [8]
Huang, Y. Y., Simpson, E., Kellendonk, C., & Kandel, E. R. (2004). Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3236–3241. https://doi.org/10.1073/pnas.0308280101 [9]
Wang, C. C., Held, R. G., Chang, S. C., Yang, L., Delpire, E., Ghosh, A., & Hall, B. J. (2011). A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron, 72(5), 789–805. https://doi.org/10.1016/j.neuron.2011.09.023 [10]
Goebel, D. J., & Poosch, M. S. (1999). NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain research. Molecular brain research, 69(2), 164–170. https://doi.org/10.1016/s0169-328x(99)00100-x [11]
Wang, M., Yang, Y., Wang, C. J., Gamo, N. J., Jin, L. E., Mazer, J. A., Morrison, J. H., Wang, X. J., & Arnsten, A. F. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77(4), 736–749. https://doi.org/10.1016/j.neuron.2012.12.032 [12]
Conti F. (1997). Localization of NMDA receptors in the cerebral cortex: a schematic overview. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 30(5), 555–560. https://doi.org/10.1590/s0100-879x1997000500001 [13]
Gewirtz, J. C., & Davis, M. (1997). Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature, 388(6641), 471–474. https://doi.org/10.1038/41325 [14]
Ohtsuka, N., Tansky, M. F., Kuang, H., Kourrich, S., Thomas, M. J., Rubenstein, J. L., Ekker, M., Leeman, S. E., & Tsien, J. Z. (2008). Functional disturbances in the striatum by region-specific ablation of NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12961–12966. https://doi.org/10.1073/pnas.0806180105 [15]
Mouri, A., Noda, Y., Enomoto, T., & Nabeshima, T. (2007). Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochemistry international, 51(2-4), 173–184. https://doi.org/10.1016/j.neuint.2007.06.019 [16]
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., Jr, & Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of general psychiatry, 51(3), 199–214. https://doi.org/10.1001/archpsyc.1994.03950030035004 [17]
Ghasemi, M., Phillips, C., Trillo, L., De Miguel, Z., Das, D., & Salehi, A. (2014). The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neuroscience and biobehavioral reviews, 47, 336–358. https://doi.org/10.1016/j.neubiorev.2014.08.017 [18]
Prasad, K. M., Shirts, B. H., Yolken, R. H., Keshavan, M. S., & Nimgaonkar, V. L. (2007). Brain morphological changes associated with exposure to HSV1 in first-episode schizophrenia. Molecular psychiatry, 12(1), 105–1. https://doi.org/10.1038/sj.mp.4001915 [19]
Miyakawa, T., Leiter, L. M., Gerber, D. J., Gainetdinov, R. R., Sotnikova, T. D., Zeng, H., Caron, M. G., & Tonegawa, S. (2003). Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8987–8992. https://doi.org/10.1073/pnas.1432926100 [20]
Mouri, A., Lee, H. J., Mamiya, T., Aoyama, Y., Matsumoto, Y., Kubota, H., Huang, W. J., Chiou, L. C., & Nabeshima, T. (2020). Hispidulin attenuates the social withdrawal in isolated disrupted-in-schizophrenia-1 mutant and chronic phencyclidine-treated mice. British journal of pharmacology, 177(14), 3210–3224. https://doi.org/10.1111/bph.15043 [21]
Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophrenia bulletin, 44(1), 168–181. https://doi.org/10.1093/schbul/sbx034 [22]
Henriksen, M. G., Nordgaard, J., & Jansson, L. B. (2017). Genetics of Schizophrenia: Overview of Methods, Findings and Limitations. Frontiers in human neuroscience, 11, 322. https://doi.org/10.3389/fnhum.2017.00322 [23]
Verdoux, H., Geddes, J. R., Takei, N., Lawrie, S. M., Bovet, P., Eagles, J. M., Heun, R., McCreadie, R. G., McNeil, T. F., O'Callaghan, E., Stöber, G., Willinger, M. U., Wright, P., & Murray, R. M. (1997). Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. The American journal of psychiatry, 154(9), 1220–1227. https://doi.org/10.1176/ajp.154.9.1220 [24]
Picchioni, M. M., Rijsdijk, F., Toulopoulou, T., Chaddock, C., Cole, J. H., Ettinger, U., Oses, A., Metcalfe, H., Murray, R. M., & McGuire, P. (2017). Familial and environmental influences on brain volumes in twins with schizophrenia. Journal of psychiatry & neuroscience : JPN, 42(2), 122–130. https://doi.org/10.1503/jpn.140277 [25]
Picchioni, M. M., Rijsdijk, F., Toulopoulou, T., Chaddock, C., Cole, J. H., Ettinger, U., Oses, A., Metcalfe, H., Murray, R. M., & McGuire, P. (2017). Familial and environmental influences on brain volumes in twins with schizophrenia. Journal of psychiatry & neuroscience : JPN, 42(2), 122–130. https://doi.org/10.1503/jpn.140277 [26]
Zornberg, G. L., Buka, S. L., & Tsuang, M. T. (2000). Hypoxic-ischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: a 19-year longitudinal study. The American journal of psychiatry, 157(2), 196–202. https://doi.org/10.1176/appi.ajp.157.2.196 [27]
Lai, M. C., & Yang, S. N. (2011). Perinatal hypoxic-ischemic encephalopathy. Journal of biomedicine & biotechnology, 2011, 609813. https://doi.org/10.1155/2011/609813 [28]
Ulbrich, M. H., & Isacoff, E. Y. (2008). Rules of engagement for NMDA receptor subunits. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 14163–14168. https://doi.org/10.1073/pnas.0802075105 [29]
Lee, C. H., Lü, W., Michel, J. C., Goehring, A., Du, J., Song, X., & Gouaux, E. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 511(7508), 191–197. https://doi.org/10.1038/nature13548 [30]
Karakas, E., & Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science (New York, N.Y.), 344(6187), 992–997. https://doi.org/10.1126/science.1251915 [31]
Karakas, E., Simorowski, N., & Furukawa, H. (2011). Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature, 475(7355), 249–253. https://doi.org/10.1038/nature10180 [32]
Vyklicky, V., Korinek, M., Smejkalova, T., Balik, A., Krausova, B., Kaniakova, M., Lichnerova, K., Cerny, J., Krusek, J., Dittert, I., Horak, M., & Vyklicky, L. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiological research, 63(Suppl 1), S191–S203. https://doi.org/10.33549/physiolres.932678 [33]
Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., & Neyton, J. (2000). Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron, 28(3), 911–925. https://doi.org/10.1016/s0896-6273(00)00163-x [34]
Zhu, S., Stein, R. A., Yoshioka, C., Lee, C. H., Goehring, A., Mchaourab, H. S., & Gouaux, E. (2016). Mechanism of NMDA Receptor Inhibition and Activation. Cell, 165(3), 704–714. https://doi.org/10.1016/j.cell.2016.03.028 [35]
Herron, C. E., Lester, R. A., Coan, E. J., & Collingridge, G. L. (1986). Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature, 322(6076), 265–268. https://doi.org/10.1038/322265a0 [36]
Furukawa, H., & Gouaux, E. (2003). Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. The EMBO journal, 22(12), 2873–2885. https://doi.org/10.1093/emboj/cdg303 [37]
Chung, H. J., Huang, Y. H., Lau, L. F., & Huganir, R. L. (2004). Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(45), 10248–10259. https://doi.org/10.1523/JNEUROSCI.0546-04.2004 [38]
Grant, E. R., Guttmann, R. P., Seifert, K. M., & Lynch, D. R. (2001). A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neuroscience letters, 310(1), 9–12. https://doi.org/10.1016/s0304-3940(01)02085-7 [39]
Nakazawa, T., Komai, S., Tezuka, T., Hisatsune, C., Umemori, H., Semba, K., Mishina, M., Manabe, T., & Yamamoto, T. (2001). Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. The Journal of biological chemistry, 276(1), 693–699. https://doi.org/10.1074/jbc.M008085200 [40]
Won, S., Incontro, S., Nicoll, R. A., & Roche, K. W. (2016). PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proceedings of the National Academy of Sciences of the United States of America, 113(32), E4736–E4744. https://doi.org/10.1073/pnas.1609702113 [41]
Dzubay, J. A., & Jahr, C. E. (1996). Kinetics of NMDA channel opening. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(13), 4129–4134. https://doi.org/10.1523/JNEUROSCI.16-13-04129.1996 [42]
Lester, R. A., Clements, J. D., Westbrook, G. L., & Jahr, C. E. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346(6284), 565–567. https://doi.org/10.1038/346565a0 [43]
Jahr, C. E., & Stevens, C. F. (1993). Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 11573–11577. https://doi.org/10.1073/pnas.90.24.11573 [44]
Petralia, R. S., Wang, Y. X., & Wenthold, R. J. (1994). The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14(10), 6102–6120. https://doi.org/10.1523/JNEUROSCI.14-10-06102.1994 [45]
Bagasrawala, I., Memi, F., V Radonjic, N., & Zecevic, N. (2017). N-Methyl d-Aspartate Receptor Expression Patterns in the Human Fetal Cerebral Cortex. Cerebral cortex (New York, N.Y. : 1991), 27(11), 5041–5053. https://doi.org/10.1093/cercor/bhw289 [46]
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529–540. https://doi.org/10.1016/0896-6273(94)90210-0 [47]
Hansen, K. B., Ogden, K. K., Yuan, H., & Traynelis, S. F. (2014). Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron, 81(5), 1084–1096. https://doi.org/10.1016/j.neuron.2014.01.035 [48]
Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L., & Bashir, Z. I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(36), 7821–7828. https://doi.org/10.1523/JNEUROSCI.1697-04.2004 [49]
Li, R., Huang, F. S., Abbas, A. K., & Wigström, H. (2007). Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity. BMC neuroscience, 8, 55. https://doi.org/10.1186/1471-2202-8-55 [50]
Brown, E. S., Kulikova, A., Van Enkevort, E., Nakamura, A., Ivleva, E. I., Tustison, N. J., Roberts, J., Yassa, M. A., Choi, C., Frol, A., Khan, D. A., Vazquez, M., Holmes, T., & Malone, K. (2019). A randomized trial of an NMDA receptor antagonist for reversing corticosteroid effects on the human hippocampus. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 44(13), 2263–2267. https://doi.org/10.1038/s41386-019-0430-8 [51]
Liu, Y. Z., Wang, Y., Tang, W., Zhu, J. Y., & Wang, Z. (2018). NMDA receptor-gated visual responses in hippocampal CA1 neurons. The Journal of physiology, 596(10), 1965–1979. https://doi.org/10.1113/JP275094 [52]
Cercato, M. C., Vázquez, C. A., Kornisiuk, E., Aguirre, A. I., Colettis, N., Snitcofsky, M., Jerusalinsky, D. A., & Baez, M. V. (2017). GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat. Frontiers in behavioral neuroscience, 10, 242. https://doi.org/10.3389/fnbeh.2016.00242 [53]
Place, R., Lykken, C., Beer, Z., Suh, J., McHugh, T. J., Tonegawa, S., Eichenbaum, H., & Sauvage, M. M. (2012). NMDA signaling in CA1 mediates selectively the spatial component of episodic memory. Learning & memory (Cold Spring Harbor, N.Y.), 19(4), 164–169. https://doi.org/10.1101/lm.025254.111 [54]
Keith, R. E., Wild, G. A., Keith, M. J., Chen, D., Pack, S., & Dumas, T. C. (2024). Individual NMDA receptor GluN2 subunit signaling domains differentially regulate the postnatal maturation of hippocampal excitatory synaptic transmission and plasticity but not dendritic morphology. Synapse (New York, N.Y.), 78(4), e22292. https://doi.org/10.1002/syn.22292 [55]
Fuchsberger, T., Clopath, C., Jarzebowski, P., Brzosko, Z., Wang, H., & Paulsen, O. (2022). Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs. eLife, 11, e81071. https://doi.org/10.7554/eLife.81071 [56]
Parsaei, L., Torkaman-Boutorabi, A., Asadi, F., & Zarrindast, M. R. (2016). Interaction between dorsal hippocampal NMDA receptors and lithium on spatial learning consolidation in rats. Brain research bulletin, 127, 1–10. https://doi.org/10.1016/j.brainresbull.2016.07.007 [57]
Shimbo, A., Kosaki, Y., Ito, I., & Watanabe, S. (2018). Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits. Behavioural brain research, 336, 156–165. https://doi.org/10.1016/j.bbr.2017.08.043 [58]
Al Abed, A. S., Sellami, A., Potier, M., Ducourneau, E. G., Gerbeaud-Lassau, P., Brayda-Bruno, L., Lamothe, V., Sans, N., Desmedt, A., Vanhoutte, P., Bennetau-Pelissero, C., Trifilieff, P., & Marighetto, A. (2020). Age-related impairment of declarative memory: linking memorization of temporal associations to GluN2B redistribution in dorsal CA1. Aging cell, 19(10), e13243. https://doi.org/10.1111/acel.13243 [59]
de Souza, I. B. M. B., Meurer, Y. D. S. R., Tavares, P. M., Pugliane, K. C., Lima, R. H., Silva, R. H., & Barbosa, F. F. (2019). Episodic-like memory impairment induced by sub-anaesthetic doses of ketamine. Behavioural brain research, 359, 165–171. https://doi.org/10.1016/j.bbr.2018.10.031 [60]
Sun, Y. Y., Cai, W., Yu, J., Liu, S. S., Zhuo, M., Li, B. M., & Zhang, X. H. (2016). Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats. Scientific reports, 6, 30743. https://doi.org/10.1038/srep30743 [61]
Khakpai, F., Nasehi, M., & Zarrindast, M. R. (2016). The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition. Pharmacology, biochemistry, and behavior, 143, 18–25. https://doi.org/10.1016/j.pbb.2016.01.003 [62]
Goodman, J., Gabriele, A., & Packard, M. G. (2016). Hippocampus NMDA receptors selectively mediate latent extinction of place learning. Hippocampus, 26(9), 1115–1123. https://doi.org/10.1002/hipo.22594 [63]
Migues, P. V., Wong, J., Lyu, J., & Hardt, O. (2019). NMDA receptor activity bidirectionally controls active decay of long-term spatial memory in the dorsal hippocampus. Hippocampus, 29(9), 883–888. https://doi.org/10.1002/hipo.23096 [64]
Rossato, J. I., Radiske, A., Gonzalez, M. C., Apolinário, G., de Araújo, R. L. S., Bevilaqua, L. R. M., & Cammarota, M. (2023). NMDARs control object recognition memory destabilization and reconsolidation. Brain research bulletin, 197, 42–48. https://doi.org/10.1016/j.brainresbull.2023.03.013 [65]
Goodfellow, M. J., Abdulla, K. A., & Lindquist, D. H. (2016). Neonatal Ethanol Exposure Impairs Trace Fear Conditioning and Alters NMDA Receptor Subunit Expression in Adult Male and Female Rats. Alcoholism, clinical and experimental research, 40(2), 309–318. https://doi.org/10.1111/acer.12958 [66]
Wang, K., Chen, Z., Wu, D., Ding, Q., Zheng, X., Wang, J., Ji, C., & Luo, B. (2019). Early second-line therapy is associated with improved episodic memory in anti-NMDA receptor encephalitis. Annals of clinical and translational neurology, 6(7), 1202–1213. https://doi.org/10.1002/acn3.50798 [67]
Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105), 929–933. https://doi.org/10.1038/nature05028 [68]
Perez-Rando, M., Castillo-Gómez, E., Guirado, R., Blasco-Ibañez, J. M., Crespo, C., Varea, E., & Nacher, J. (2017). NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons. Frontiers in cellular neuroscience, 11, 166. https://doi.org/10.3389/fncel.2017.00166 [69]
Booker, S. A., Sumera, A., Kind, P. C., & Wyllie, D. J. A. (2021). Contribution of NMDA Receptors to Synaptic Function in Rat Hippocampal Interneurons. eNeuro, 8(4), ENEURO.0552-20.2021. https://doi.org/10.1523/ENEURO.0552-20.2021 [70]
Ceanga, M., Rahmati, V., Haselmann, H., Schmidl, L., Hunter, D., Brauer, A. K., Liebscher, S., Kreye, J., Prüss, H., Groc, L., Hallermann, S., Dalmau, J., Ori, A., Heckmann, M., & Geis, C. (2023). Human NMDAR autoantibodies disrupt excitatory-inhibitory balance, leading to hippocampal network hypersynchrony. Cell reports, 42(10), 113166. https://doi.org/10.1016/j.celrep.2023.113166 [71]
Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., & Monyer, H. (2010). NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron, 68(3), 557–569. https://doi.org/10.1016/j.neuron.2010.09.017 [72]
Ceanga, M., Rahmati, V., Haselmann, H., Schmidl, L., Hunter, D., Brauer, A. K., Liebscher, S., Kreye, J., Prüss, H., Groc, L., Hallermann, S., Dalmau, J., Ori, A., Heckmann, M., & Geis, C. (2023). Human NMDAR autoantibodies disrupt excitatory-inhibitory balance, leading to hippocampal network hypersynchrony. Cell reports, 42(10), 113166. https://doi.org/10.1016/j.celrep.2023.113166 [73]
Yang, Q., Zhu, G., Liu, D., Ju, J. G., Liao, Z. H., Xiao, Y. X., Zhang, Y., Chao, N., Wang, J., Li, W., Luo, J. H., & Li, S. T. (2017). Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Scientific reports, 7(1), 3045. https://doi.org/10.1038/s41598-017-03287-7 [74]
McQuail, J. A., Beas, B. S., Kelly, K. B., Simpson, K. L., Frazier, C. J., Setlow, B., & Bizon, J. L. (2016). NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(50), 12537–12548. https://doi.org/10.1523/JNEUROSCI.2332-16.2016 [75]
van Vugt, B., van Kerkoerle, T., Vartak, D., & Roelfsema, P. R. (2020). The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory. The Journal of neuroscience : the official journal of the Society for Neuroscience, 40(12), 2458–2470. https://doi.org/10.1523/JNEUROSCI.2121-19.2020 [76]
Auger, M. L., & Floresco, S. B. (2017). Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology, 113(Pt A), 10–20. https://doi.org/10.1016/j.neuropharm.2016.09.022 [77]
Gilmartin, M. R., & Helmstetter, F. J. (2010). Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learning & memory (Cold Spring Harbor, N.Y.), 17(6), 289–296. https://doi.org/10.1101/lm.1597410 [78]
Marcondes, L. A., Nachtigall, E. G., Zanluchi, A., de Carvalho Myskiw, J., Izquierdo, I., & Furini, C. R. G. (2020). Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiology of learning and memory, 168, 107153. https://doi.org/10.1016/j.nlm.2019.107153 [79]
Del Arco, A., Ronzoni, G., & Mora, F. (2015). Hypofunction of prefrontal cortex NMDA receptors does not change stress-induced release of dopamine and noradrenaline in amygdala but disrupts aversive memory. Psychopharmacology, 232(14), 2577–2586. https://doi.org/10.1007/s00213-015-3894-1 [80]
Ren, W., Liu, X., Cheng, L., Wang, G., Liu, X., Peng, L., & Wang, Y. (2019). Embryonic Ketamine Produces a Downregulation of Prefrontal Cortex NMDA Receptors and Anxiety-Like Behavior in Adult Offspring. Neuroscience, 415, 18–30. https://doi.org/10.1016/j.neuroscience.2019.07.018 [81]
Victoriano, G., Santos-Costa, N., Mascarenhas, D. C., & Nunes-de-Souza, R. L. (2020). Inhibition of the left medial prefrontal cortex (mPFC) prolongs the social defeat-induced anxiogenesis in mice: Attenuation by NMDA receptor blockade in the right mPFC. Behavioural brain research, 378, 112312. https://doi.org/10.1016/j.bbr.2019.112312 [82]
Martin, K. P., & Wellman, C. L. (2011). NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cerebral cortex (New York, N.Y. : 1991), 21(10), 2366–2373. https://doi.org/10.1093/cercor/bhr021 [83]
Pegasiou, C. M., Zolnourian, A., Gomez-Nicola, D., Deinhardt, K., Nicoll, J. A. R., Ahmed, A. I., Vajramani, G., Grundy, P., Verhoog, M. B., Mansvelder, H. D., Perry, V. H., Bulters, D., & Vargas-Caballero, M. (2020). Age-Dependent Changes in Synaptic NMDA Receptor Composition in Adult Human Cortical Neurons. Cerebral cortex (New York, N.Y. : 1991), 30(7), 4246–4256. https://doi.org/10.1093/cercor/bhaa052 [84]
Driesen, N. R., McCarthy, G., Bhagwagar, Z., Bloch, M. H., Calhoun, V. D., D'Souza, D. C., Gueorguieva, R., He, G., Leung, H. C., Ramani, R., Anticevic, A., Suckow, R. F., Morgan, P. T., & Krystal, J. H. (2013). The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 38(13), 2613–2622. https://doi.org/10.1038/npp.2013.170 [85]
Li, J. T., Su, Y. A., Wang, H. L., Zhao, Y. Y., Liao, X. M., Wang, X. D., & Si, T. M. (2016). Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Frontiers in molecular neuroscience, 9, 17. https://doi.org/10.3389/fnmol.2016.00017 [86]
Jeevakumar, V., & Kroener, S. (2016). Ketamine Administration During the Second Postnatal Week Alters Synaptic Properties of Fast-Spiking Interneurons in the Medial Prefrontal Cortex of Adult Mice. Cerebral cortex (New York, N.Y. : 1991), 26(3), 1117–1129. https://doi.org/10.1093/cercor/bhu293 [87]
Molina, L. A., Skelin, I., & Gruber, A. J. (2014). Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PloS one, 9(1), e85842. https://doi.org/10.1371/journal.pone.0085842 [88]
Dalton, G. L., Wu, D. C., Wang, Y. T., Floresco, S. B., & Phillips, A. G. (2012). NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology, 62(2), 797–806. https://doi.org/10.1016/j.neuropharm.2011.09.001 [89]
Shors, T. J., & Mathew, P. R. (1998). NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learning & memory (Cold Spring Harbor, N.Y.), 5(3), 220–230. [90]
Park, S., Lee, S., Kim, J., & Choi, S. (2012). Ex vivo depotentiation of conditioning-induced potentiation at thalamic input synapses onto the lateral amygdala requires GluN2B-containing NMDA receptors. Neuroscience letters, 530(2), 121–126. https://doi.org/10.1016/j.neulet.2012.10.011 [91]
Wang, J., Han, J., Wang, S., Duan, Y., Bao, C., Luo, Y., Xue, Q., & Cao, X. (2021). Forebrain GluN2A overexpression impairs fear extinction and NMDAR-dependent long-term depression in the lateral amygdala. Brain research bulletin, 174, 1–10. https://doi.org/10.1016/j.brainresbull.2021.05.023 [92]
Holehonnur, R., Phensy, A. J., Kim, L. J., Milivojevic, M., Vuong, D., Daison, D. K., Alex, S., Tiner, M., Jones, L. E., Kroener, S., & Ploski, J. E. (2016). Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(36), 9490–9504. https://doi.org/10.1523/JNEUROSCI.1743-16.2016 [93]
Bacq, A., Astori, S., Gebara, E., Tang, W., Silva, B. A., Sanchez-Mut, J., Grosse, J., Guillot de Suduiraut, I., Zanoletti, O., Maclachlan, C., Knott, G. W., Gräff, J., & Sandi, C. (2020). Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Molecular psychiatry, 25(9), 2144–2161. https://doi.org/10.1038/s41380-018-0132-3 [94]
Aroniadou-Anderjaska, V., Pidoplichko, V. I., Figueiredo, T. H., & Braga, M. F. M. (2018). Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience, 373, 145–158. https://doi.org/10.1016/j.neuroscience.2018.01.021 [95]
Santos, T. B., Kramer-Soares, J. C., de Oliveira Coelho, C. A., & Oliveira, M. G. M. (2023). Functional network of contextual and temporal memory has increased amygdala centrality and connectivity with the retrosplenial cortex, thalamus, and hippocampus. Scientific reports, 13(1), 13087. https://doi.org/10.1038/s41598-023-39946-1 [96]
Ebrahimi, C., Koch, S. P., Friedel, E., Crespo, I., Fydrich, T., Ströhle, A., Heinz, A., & Schlagenhauf, F. (2017). Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall. Neurobiology of learning and memory, 142(Pt B), 209–217. https://doi.org/10.1016/j.nlm.2017.05.008 [97]
Sab, I. M., Ferraz, M. M., Amaral, T. A., Resende, A. C., Ferraz, M. R., Matsuura, C., Brunini, T. M., & Mendes-Ribeiro, A. C. (2013). Prenatal hypoxia, habituation memory and oxidative stress. Pharmacology, biochemistry, and behavior, 107, 24–28. https://doi.org/10.1016/j.pbb.2013.04.004 [98]
Guo, R., Hou, W., Dong, Y., Yu, Z., Stites, J., & Weiner, C. P. (2010). Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation. Reproductive sciences (Thousand Oaks, Calif.), 17(6), 540–548. https://doi.org/10.1177/1933719110364061 [99]
O'Donnell, J. C., Jackson, J. G., & Robinson, M. B. (2016). Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes. The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(27), 7109–7127. https://doi.org/10.1523/JNEUROSCI.4518-15.2016 [100]
Cai, Z., & Rhodes, P. G. (2001). Intrauterine hypoxia-ischemia alters expression of the NMDA receptor in the young rat brain. Neurochemical research, 26(5), 487–495. https://doi.org/10.1023/a:1010904727225 [101]
Wei, B., Li, L., He, A., Zhang, Y., Sun, M., & Xu, Z. (2016). Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatal hypoxia. Brain research, 1631, 157–164. https://doi.org/10.1016/j.brainres.2015.11.041 [102]
McClendon, E., Wang, K., Degener-O'Brien, K., Hagen, M. W., Gong, X., Nguyen, T., Wu, W. W., Maylie, J., & Back, S. A. (2019). Transient Hypoxemia Disrupts Anatomical and Functional Maturation of Preterm Fetal Ovine CA1 Pyramidal Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 39(40), 7853–7871. https://doi.org/10.1523/JNEUROSCI.1364-19.2019 [103]
Li, T., Luo, Z., Liu, Y., Wang, M., Yu, X., Cao, C., Liao, Z., Ding, Y., & Yue, S. (2018). Excessive Activation of NMDA Receptors Induced Neurodevelopmental Brain Damage and Cognitive Deficits in Rats Exposed to Intrauterine Hypoxia. Neurochemical research, 43(3), 566–580. https://doi.org/10.1007/s11064-017-2451-1 [104]
Gisslen, T., Singh, G., & Georgieff, M. K. (2019). Fetal inflammation is associated with persistent systemic and hippocampal inflammation and dysregulation of hippocampal glutamatergic homeostasis. Pediatric research, 85(5), 703–710. https://doi.org/10.1038/s41390-019-0330-y [105]
Brigman, J. L., Wright, T., Talani, G., Prasad-Mulcare, S., Jinde, S., Seabold, G. K., Mathur, P., Davis, M. I., Bock, R., Gustin, R. M., Colbran, R. J., Alvarez, V. A., Nakazawa, K., Delpire, E., Lovinger, D. M., & Holmes, A. (2010). Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(13), 4590–4600. https://doi.org/10.1523/JNEUROSCI.0640-10.2010 [106]
Zhuravin, I. A., Dubrovskaya, N. M., Vasilev, D. S., Postnikova, T. Y., & Zaitsev, A. V. (2019). Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiology of learning and memory, 164, 107066. https://doi.org/10.1016/j.nlm.2019.107066 [107]
Annink, K. V., de Vries, L. S., Groenendaal, F., van den Heuvel, M. P., van Haren, N. E. M., Swaab, H., van Handel, M., Jongmans, M. J., Benders, M. J., & van der Aa, N. E. (2019). The long-term effect of perinatal asphyxia on hippocampal volumes. Pediatric research, 85(1), 43–49. https://doi.org/10.1038/s41390-018-0115-8 [108]
Marques, K. L., Moreira, M. L., Thiele, M. C., Cunha-Rodrigues, M. C., & Barradas, P. C. (2023). Depressive-like behavior and impaired synaptic plasticity in the prefrontal cortex as later consequences of prenatal hypoxic-ischemic insult in rats. Behavioural brain research, 452, 114571. https://doi.org/10.1016/j.bbr.2023.114571 [109]
Goussakov, I., Synowiec, S., Fabres, R. B., Almeida, G. D., Takada, S. H., Aksenov, D., & Drobyshevsky, A. (2024). Abnormal local cortical functional connectivity due to interneuron dysmaturation after neonatal intermittent hypoxia. bioRxiv : the preprint server for biology, 2024.06.04.596449. https://doi.org/10.1101/2024.06.04.596449 [110]
Chang, E. I., Zárate, M. A., Rabaglino, M. B., Richards, E. M., Arndt, T. J., Keller-Wood, M., & Wood, C. E. (2016). Ketamine decreases inflammatory and immune pathways after transient hypoxia in late gestation fetal cerebral cortex. Physiological reports, 4(6), e12741. https://doi.org/10.14814/phy2.12741 [111]
Domnick, N. K., Gretenkord, S., De Feo, V., Sedlacik, J., Brockmann, M. D., & Hanganu-Opatz, I. L. (2015). Neonatal hypoxia-ischemia impairs juvenile recognition memory by disrupting the maturation of prefrontal-hippocampal networks. Experimental neurology, 273, 202–214. https://doi.org/10.1016/j.expneurol.2015.08.017 [112]
Delcour, M., Olivier, P., Chambon, C., Pansiot, J., Russier, M., Liberge, M., Xin, D., Gestreau, C., Alescio-Lautier, B., Gressens, P., Verney, C., Barbe, M. F., Baud, O., & Coq, J. O. (2012). Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain pathology (Zurich, Switzerland), 22(1), 1–16. https://doi.org/10.1111/j.1750-3639.2011.00504.x [113]
Finder, M., Boylan, G. B., Twomey, D., Ahearne, C., Murray, D. M., & Hallberg, B. (2020). Two-Year Neurodevelopmental Outcomes After Mild Hypoxic Ischemic Encephalopathy in the Era of Therapeutic Hypothermia. JAMA pediatrics, 174(1), 48–55. https://doi.org/10.1001/jamapediatrics.2019.4011 [114]
Liang, D., Li, G., Liao, X., Yu, D., Wu, J., & Zhang, M. (2016). Developmental loss of parvalbumin-positive cells in the prefrontal cortex and psychiatric anxiety after intermittent hypoxia exposures in neonatal rats might be mediated by NADPH oxidase-2. Behavioural brain research, 296, 134–140. https://doi.org/10.1016/j.bbr.2015.08.033 [115]
Azevedo, P. N., Zanirati, G., Venturin, G. T., Schu, G. G., Durán-Carabali, L. E., Odorcyk, F. K., Soares, A. V., Laguna, G. O., Netto, C. A., Zimmer, E. R., da Costa, J. C., & Greggio, S. (2020). Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiology of learning and memory, 171, 107207. https://doi.org/10.1016/j.nlm.2020.10 7207[116]
Wang, Y., Wang, Y., Hua, G., Yu, M., Lin, L., Zhang, L., & Li, H. (2023). Changes of Functional Brain Network in Neonates with Different Degrees of Hypoxic-Ischemic Encephalopathy. Brain connectivity, 13(7), 427–435. https://doi.org/10.1089/brain.2022.0073 [117]
Palanisamy, A., Giri, T., Jiang, J., Bice, A., Quirk, J. D., Conyers, S. B., Maloney, S. E., Raghuraman, N., Bauer, A. Q., Garbow, J. R., & Wozniak, D. F. (2020). In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring. JCI insight, 5(10), e133172. https://doi.org/10.1172/jci.insight.133172 [118]
Wang, Z. X., Su, R., Li, H., Dang, P., Zeng, T. A., Chen, D. M., Wu, J. G., Zhang, D. L., & Ma, H. L. (2022). Changes in Hippocampus and Amygdala Volume with Hypoxic Stress Related to Cardiorespiratory Fitness under a High-Altitude Environment. Brain sciences, 12(3), 359. https://doi.org/10.3390/brainsci12030359 [119]
Fan, H., Li, X., Wang, W., Lai, Q., Tang, X., Gao, D., Yin, X., & Xu, T. (2015). Effects of NMDA-Receptor Antagonist on the Expressions of Bcl-2 and Bax in the Subventricular Zone of Neonatal Rats with Hypoxia-Ischemia Brain Damage. Cell biochemistry and biophysics, 73(2), 323–330. https://doi.org/10.1007/s12013-015-0586-8 [120]
Järlestedt, K., Atkins, A. L., Hagberg, H., Pekna, M., & Mallard, C. (2011). Trace fear conditioning detects hypoxic-ischemic brain injury in neonatal mice. Developmental neuroscience, 33(3-4), 222–230. https://doi.org/10.1159/000329710 [121]
Haukvik, U. K., McNeil, T., Lange, E. H., Melle, I., Dale, A. M., Andreassen, O. A., & Agartz, I. (2014). Pre- and perinatal hypoxia associated with hippocampus/amygdala volume in bipolar disorder. Psychological medicine, 44(5), 975–985. https://doi.org/10.1017/S0033291713001529 [122]
Liu, N., Tong, X., Huang, W., Fu, J., & Xue, X. (2019). Synaptic Injury in the Thalamus Accompanies White Matter Injury in Hypoxia/Ischemia-Mediated Brain Injury in Neonatal Rats. BioMed research international, 2019, 5249675. https://doi.org/10.1155/2019/5249675 [123]
Liu, X. B., Shen, Y., Pleasure, D. E., & Deng, W. (2016). The vulnerability of thalamocortical circuitry to hypoxic-ischemic injury in a mouse model of periventricular leukomalacia. BMC neuroscience, 17, 2. https://doi.org/10.1186/s12868-015-0237-4 [124]
Kornau, H. C., Schenker, L. T., Kennedy, M. B., & Seeburg, P. H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science (New York, N.Y.), 269(5231), 1737–1740. https://doi.org/10.1126/science.7569905 [125]
Muntsant, A., Shrivastava, K., Recasens, M., & Giménez-Llort, L. (2019). Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Frontiers in behavioral neuroscience, 13, 7. https://doi.org/10.3389/fnbeh.2019.00007 [126]
Mouri, A., Noda, Y., Enomoto, T., & Nabeshima, T. (2007). Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochemistry international, 51(2-4), 173–184. https://doi.org/10.1016/j.neuint.2007.06.019 [127]
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., Jr, & Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of general psychiatry, 51(3), 199–214. https://doi.org/10.1001/archpsyc.1994.03950030035004 [128]
Segev, A., Yanagi, M., Scott, D., Southcott, S. A., Lister, J. M., Tan, C., Li, W., Birnbaum, S. G., Kourrich, S., & Tamminga, C. A. (2020). Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Molecular psychiatry, 25(11), 2832–2843. https://doi.org/10.1038/s41380-018-0124-3 [129]
Finlay, J. M., Dunham, G. A., Isherwood, A. M., Newton, C. J., Nguyen, T. V., Reppar, P. C., Snitkovski, I., Paschall, S. A., & Greene, R. W. (2015). Effects of prefrontal cortex and hippocampal NMDA NR1-subunit deletion on complex cognitive and social behaviors. Brain research, 1600, 70–83. https://doi.org/10.1016/j.brainres.2014.10.037 [130]
Li, W., Ghose, S., Gleason, K., Begovic, A., Perez, J., Bartko, J., Russo, S., Wagner, A. D., Selemon, L., & Tamminga, C. A. (2015). Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. The American journal of psychiatry, 172(4), 373–382. https://doi.org/10.1176/appi.ajp.2014.14010123 [131]
Stan, A. D., Ghose, S., Zhao, C., Hulsey, K., Mihalakos, P., Yanagi, M., Morris, S. U., Bartko, J. J., Choi, C., & Tamminga, C. A. (2015). Magnetic resonance spectroscopy and tissue protein concentrations together suggest lower glutamate signaling in dentate gyrus in schizophrenia. Molecular psychiatry, 20(4), 433–439. https://doi.org/10.1038/mp.2014.54 [132]
Gao, X. M., Sakai, K., Roberts, R. C., Conley, R. R., Dean, B., & Tamminga, C. A. (2000). Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. The American journal of psychiatry, 157(7), 1141–1149. https://doi.org/10.1176/appi.ajp.157.7.1141 [133]
Chen, F., Bertelsen, A. B., Holm, I. E., Nyengaard, J. R., Rosenberg, R., & Dorph-Petersen, K. A. (2020). Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain research, 1727, 146546. https://doi.org/10.1016/j.brainres.2019.146546 [134]
Catts, V. S., Lai, Y. L., Weickert, C. S., Weickert, T. W., & Catts, S. V. (2016). A quantitative review of the postmortem evidence for decreased cortical N-methyl-D-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits?. Biological psychology, 116, 57–67. https://doi.org/10.1016/j.biopsycho.2015.10.013 [135]
Finlay, J. M., Dunham, G. A., Isherwood, A. M., Newton, C. J., Nguyen, T. V., Reppar, P. C., Snitkovski, I., Paschall, S. A., & Greene, R. W. (2015). Effects of prefrontal cortex and hippocampal NMDA NR1-subunit deletion on complex cognitive and social behaviors. Brain research, 1600, 70–83. https://doi.org/10.1016/j.brainres.2014.10.037 [136]
Anticevic, A., Corlett, P. R., Cole, M. W., Savic, A., Gancsos, M., Tang, Y., Repovs, G., Murray, J. D., Driesen, N. R., Morgan, P. T., Xu, K., Wang, F., & Krystal, J. H. (2015). N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia. Biological psychiatry, 77(6), 569–580. https://doi.org/10.1016/j.biopsych.2014.07.022 [137]
Ranlund, S., Adams, R. A., Díez, Á., Constante, M., Dutt, A., Hall, M. H., Maestro Carbayo, A., McDonald, C., Petrella, S., Schulze, K., Shaikh, M., Walshe, M., Friston, K., Pinotsis, D., & Bramon, E. (2016). Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Human brain mapping, 37(1), 351–365. https://doi.org/10.1002/hbm.23035 [138]
Santos-Silva, T., Dos Santos Fabris, D., de Oliveira, C. L., Guimarães, F. S., & Gomes, F. V. (2024). Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophrenia bulletin, 50(1), 210–223. https://doi.org/10.1093/schbul/sbad123 [139]
Huang, X., Li, Y., Liu, H., Xu, J., Tan, Z., Dong, H., Tian, B., Wu, S., & Wang, W. (2022). Activation of basolateral amygdala to anterior cingulate cortex circuit alleviates MK-801 induced social and cognitive deficits of schizophrenia. Frontiers in cellular neuroscience, 16, 1070015. https://doi.org/10.3389/fncel.2022.1070015 [140]
Mihara, T., Mensah-Brown, K., Sobota, R., Lin, R., Featherstone, R., & Siegel, S. J. (2017). Amygdala activity associated with social choice in mice. Behavioural brain research, 332, 84–89. https://doi.org/10.1016/j.bbr.2017.04.040 [141]
Pollak, T. A., Kempton, M. J., Iyegbe, C., Vincent, A., Irani, S. R., Coutinho, E., Menassa, D. A., Jacobson, L., de Haan, L., Ruhrmann, S., Sachs, G., Riecher-Rössler, A., Krebs, M. O., Amminger, P., Glenthøj, B., Barrantes-Vidal, N., van Os, J., Rutten, B. P. F., Bressan, R. A., van der Gaag, M., … McGuire, P. (2021). Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis. Molecular psychiatry, 26(6), 2590–2604. https://doi.org/10.1038/s41380-020-00899-w [142]
Adams, S. M., de Rivero Vaccari, J. C., & Corriveau, R. A. (2004). Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(42), 9441–9450. https://doi.org/10.1523/JNEUROSCI.3290-04.2004 [143]
Clinton, S. M., & Meador-Woodruff, J. H. (2004). Abnormalities of the NMDA Receptor and Associated Intracellular Molecules in the Thalamus in Schizophrenia and Bipolar Disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 29(7), 1353–1362. https://doi.org/10.1038/sj.npp.1300451 [144]
Coley, A. A., & Gao, W. J. (2019). PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Scientific reports, 9(1), 9486. https://doi.org/10.1038/s41598-019-45971-w [145]
Correll, C. U., Arango, C., Fagerlund, B., Galderisi, S., Kas, M. J., & Leucht, S. (2024). Identification and treatment of individuals with childhood-onset and early-onset schizophrenia. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 82, 57–71. https://doi.org/10.1016/j.euroneuro.2024.02.005[146]
Published
How to Cite
Issue
Section
Copyright (c) 2025 Ashley He; Nicole Kathcur

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


