The Double-Edged Sword: Genetic and Environmental Contributions to Pediatric Leukemia

Authors

DOI:

https://doi.org/10.47611/jsrhs.v14i1.8885

Keywords:

Pediatric Oncology, Leukemia, Genetic and Environmental Factors, Carcinogens, Public Health

Abstract

Leukemia is the most common pediatric cancer, affecting 33% of children globally. Genetic mutations and environmental factors increase the risk of developing pediatric leukemia. Mutations of the genes RUNX1, TP53, and BRCA1 increase risk by disrupting cell differentiation and proliferation and impairing deoxyribonucleic acid (DNA) repair. Environmental risk factors (i.e., ionizing radiation, benzene, and pesticides) disrupt DNA replication and cell growth, often leading to genetic mutations. This literature review explores both the genetic and environmental risk factors of pediatric leukemia. We searched peer-reviewed references using Google Scholar. Findings illustrate the interplay between DNA mutations and environmental influences. Specifically, RUNX1 mutations and pesticide exposure, particularly benzene, disrupt DNA replication. Individuals with a RUNX1 mutation are at a higher risk of developing leukemia, particularly if exposed to pesticides, highlighting the impact of environmental factors on the increased risk of leukemia. Researchers and health professionals should consider the interplay between genetic mutations and environmental factors when evaluating the risk of childhood leukemia. Testing children for exposure to environmental factors may allow for early diagnosis and tailored treatment and prevention interventions for children with higher susceptibility to developing leukemia.

Downloads

Download data is not yet available.

Author Biographies

Akshitha D. Gopikrishnan, Rock Hill High School, Texas

Akshitha D. Gopikrishnan is a junior at Rock Hill High School, passionate about biomedical research with the aspirations in medicine. She believes that understanding the science behind health and disease is essential for creating effective treatments and improving patient care. Akshitha has explored topics like genetics, disease prevention, and healthcare innovations. She is eager to continue learning and contributing to medical advancements. 

Dr. Christie L. Martin, University of Minnesota, School of Nursing

Dr. Christie L. Martin is an Assitant Professor at the University of Minnesota, School of Nursing

References or Bibliography

References

American Cancer Society. (2024). Risk factors for childhood leukemia. https://www.cancer.org/cancer/types/leukemia-in-children/causes-risks-prevention/risk-factors.html

Brown, P., Inaba, H., Annesley, C., Beck, J., Colace, S., Dallas, M., DeSantes, K., Kelly, K., Kitko, C., Lacayo, N., Larrier, N., Maese, L., Mahadeo, K., Nanda, R., Nardi, V., Rodriguez, V., Rossoff, J., Schuettpelz, L., Silverman, L., … Ogba, N. (2020). Pediatric acute lymphoblastic leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 18(1), 81–112. https://doi.org/10.6004/jnccn.2020.0001

Buffler, P., Kwan, M., Reynolds, P., & Urayama, K. (2005). Environmental and genetic risk factors for childhood leukemia: Appraising the evidence. Cancer Investigation, 23(1), 60–75. https://doi.org/10.1081/CNV-200046402

Buser, J. M., Lake, K., & Ginier, E. (2022). Environmental risk factors for childhood cancer in an era of global climate change: A scoping review. Journal of Pediatric Health Care, 36(1), 46–56. https://doi.org/10.1016/j.pedhc.2021.05.005

Casaubon, J. T., Kashyap, S., & Regan, J.-P. (2024). BRCA1 and BRCA2 Mutations.

Cedars-Sinai. (2024). Leukemia in children. Website. https://www.cedars-sinai.org/health-library/diseases-and-conditions---pediatrics/l/leukemia-in-children.html

Chen, X., Zhang, T., Su, W., Dou, Z., Zhao, D., Jin, X., Lei, H., Wang, J., Xie, X., Cheng, B., Li, Q., Zhang, H., & Di, C. (2022). Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death & Disease, 13(11), 974–974. https://doi.org/10.1038/s41419-022-05408-1

de Smith, A. J., Jiménez-Morales, S., & Mejía-Aranguré, J. M. (2024). The genetic risk of acute lymphoblastic leukemia and its implications for children of Latin American origin. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1299355

Dreinhöfer, K. E., Åkerman, M., Willén, H., Anderson, C., Gustafson, P., & Rydholm, A. (1994). Proliferating cell nuclear antigen (PCNA) in high‐grade malignant fibrous histiocytoma: Prognostic value in 48 patients. International Journal of Cancer, 59(3), 379–382. https://doi.org/10.1002/ijc.2910590315

Fair, D., Maese, L., Chi, Y., Li, M., Hawkins, D. S., Venkatramani, R., Rudzinski, E., Parham, D., Teot, L., Malkin, D., Plon, S. E., Li, H., Sabo, A., Lupo, P. J., & Schiffman, J. D. (2023). TP53 germline pathogenic variant frequency in anaplastic rhabdomyosarcoma: A children’s oncology group report. Pediatric Blood & Cancer, 70(9). https://doi.org/10.1002/pbc.30413

Goetz, L. H., & Schork, N. J. (2018). Personalized medicine: Motivation, challenges, and progress. Fertility and Sterility, 109(6), 952–963. https://doi.org/10.1016/j.fertnstert.2018.05.006

Hewelt-Belka, W., Kot-Wasik, Á., Tamagnini, P., & Oliveira, P. (2020). Untargeted lipidomics analysis of the cyanobacterium Synechocystis sp. PCC 6803: Lipid composition variation in response to alternative cultivation setups to gene deletion. International Journal of Molecular Sciences, 21(23), 8883–8883. https://doi.org/10.3390/ijms21238883

Jackson, M., Marks, L., May, G. H. W., & Wilson, J. B. (2018). The genetic basis of disease. Essays in Biochemistry, 62(5), 643–723. https://doi.org/10.1042/EBC20170053

Johnson, K.J., Soler, J.T., Puumala, S.E. et al. Parental and infant characteristics and childhood leukemia in Minnesota. BMC Pediatr 8, 7 (2008). https://doi.org/10.1186/1471-2431-8-7

Kratz, C. P., Smirnov, D., Autry, R., Jäger, N., Waszak, S. M., Großhennig, A., Berutti, R., Wendorff, M., Hainaut, P., Pfister, S. M., Prokisch, H., Ripperger, T., & Malkin, D. (2022). Heterozygous BRCA1 and BRCA2 and mismatch repair gene pathogenic variants in children and adolescents with cancer. JNCI: Journal of the National Cancer Institute, 114(11), 1523–1532. https://doi.org/10.1093/jnci/djac151

Lee, S. H. R., Yang, W., Gocho, Y., John, A., Rowland, L., Smart, B., Williams, H., Maxwell, D., Hunt, J., Yang, W., Crews, K. R., Roberts, K. G., Jeha, S., Cheng, C., Karol, S. E., Relling, M. V., Rosner, G. L., Inaba, H., Mullighan, C. G., … Yang, J. J. (2023). Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nature Medicine, 29(1), 170–179. https://doi.org/10.1038/s41591-022-02112-7

Lin, T.-C. (2022). RUNX1 and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(3), 188715–188715. https://doi.org/10.1016/j.bbcan.2022.188715

MOFFITT Cancer Center. (2024). Leukemia. Website. https://www.moffitt.org/cancers/leukemia/

National Cancer Institute. (2024a). BRCA gene changes: Cancer risk and genetic testing. Website. https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet

National Cancer Institute. (2024b). Childhood acLymphoblasticstic leukemia (PDQ®)–Patient version. Website. https://www.cancer.gov/types/leukemia/patient/child-all-treatment-pdq

Onyije, F. M., Olsson, A., Baaken, D., Erdmann, F., Stanulla, M., Wollschläger, D., & Schüz, J. (2022). Environmental risk factors for childhood acute lymphoblastic leukemia: An umbrella review. Cancers, 14(2), 382–382. https://doi.org/10.3390/cancers14020382

Ramsey, J., Butnor, K., Peng, Z., Leclair, T., van der Velden, J., Stein, G., Lian, J., & Kinsey, C. M. (2018). Loss of RUNX1 is associated with aggressive lung adenocarcinomas. Journal of Cellular Physiology, 233(4), 3487–3497. https://doi.org/10.1002/jcp.26201

Siegel, D. A., Li, J., Henley, S. J., Wilson, R. J., Lunsford, N. B., Tai, E., & Van Dyne, E. A. (2018). Geographic variation in pediatric cancer incidence—United States, 2003–2014. MMWR. Morbidity and Mortality Weekly Report, 67(25), 707–713. https://doi.org/10.15585/mmwr.mm6725a2

St. Luke’s. (2024). BRCA. Website. https://www.saintlukeskc.org/health-library/brca

Ueno, H., Yoshida, K., Shiozawa, Y., Nannya, Y., Iijima-Yamashita, Y., Kiyokawa, N., Shiraishi, Y., Chiba, K., Tanaka, H., Isobe, T., Seki, M., Kimura, S., Makishima, H., Kakiuchi, N., Kataoka, K., Yoshizato, T., Tsukamoto, H., Nishijima, D., Deguchi, T., … Sanada, M. (2018). The prognostic value of TP53 mutations depends on clinical backgrounds in pediatric patients with acute lymphoblastic leukemia. Blood, 132(Supplement 1), 4077–4077. https://doi.org/10.1182/blood-2018-99-115617

United States Environmental Protection Agency. (2024). EPA efforts to reduce exposure to carcinogens and prevent cancer. Website. https://www.epa.gov/environmental-topics/epa-efforts-reduce-exposure-carcinogens-and-prevent-cancer

Villegas-Ruíz, V., Medina-Vera, I., Arellano-Perdomo, P., Castillo-Villanueva, A., Galván-Diaz, C. A., Paredes-Aguilera, R., Rivera-Luna, R., & Juárez-Méndez, S. (2023). Low expression of BRCA1 as a potential relapse predictor in B-Cell acute lymphoblastic leukemia. Journal of Pediatric Hematology/Oncology, 45(2), e167–e173. https://doi.org/10.1097/MPH.0000000000002595

Published

02-28-2025

How to Cite

Gopikrishnan, A., & Martin, C. (2025). The Double-Edged Sword: Genetic and Environmental Contributions to Pediatric Leukemia. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8885

Issue

Section

HS Research Articles