Role of Gut Microbiota in Bone Healing: Implications for Sports Injury Recovery
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8838Keywords:
gut-bone axis, biochemistry (rehabilitation), sports medicine (application), hormonal irregularities, skeletal development, prebiotics, probiotics, osteoclasts, SCFAsAbstract
The gut microbiota has emerged as a critical factor influencing bone health through complex integrations with the skeletal system. This review explores the multifaceted role of gut bacteria in bone remodeling, focusing on the gut-bone axis and its impact on osteoclast and osteoblast activity. The production of short-chain fatty acids (SCFAs) by gut bacteria and their regulatory effects on bone cell activity, inflammation, hormones, and tissue production are highlighted, emphasizing their potential in promoting bone health. Key bacterial taxa, both beneficial and pathogenic, have been indicated with emphasis on their differential effects on bone healing. The therapeutic potential of prebiotics and probiotics has also been explored and elucidated. Furthermore, the review also investigates the influence of sports injuries on the gut microbiota and the role of gut dysbiosis in hinderance of fracture healing. Through the findings of this study based on the synthesis of existing knowledge in the field, gut microbiota modulation emerges as a promising strategy to support bone recovery after sport injuries. Additionally, it addresses the interplay between exercise, diet, and gut-bone connection, elucidating the role of physical activity and dietary interventions in the optimization of both, bone health and athletic performance. This review identifies the current knowledge gaps, challenges in clinical translation, and discusses the future directions in targeting the gut-bone axis for personalized therapeutic interventions.
Downloads
References or Bibliography
Bordukalo-Nikšić, T., Kufner, V., & Vukičević, S. (2022). The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.869422
Carter, M. I., & Hinton, P. S. (2014). Physical activity and bone health. Missouri Medicine, 111(1), 59–64.
Cheng, C.-H., Chen, L.-R., & Chen, K.-H. (2022). Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. International Journal of Molecular Sciences, 23(3), 1376. https://doi.org/10.3390/ijms23031376
Chiang, Y. A., Ip, W., & Jin, T. (2012). The role of the Wnt signaling pathway in incretin hormone production and function. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00273
Costantini, L., Molinari, R., Farinon, B., & Merendino, N. (2017). Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122645
Fakharian, F., Thirugnanam, S., Welsh, D. A., Kim, W.-K., Rappaport, J., Bittinger, K., & Rout, N. (2023). The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms, 11(7), 1849. https://doi.org/10.3390/microorganisms11071849
Hughes, R. L., Alvarado, D. A., Swanson, K. S., & Holscher, H. D. (2022). The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Advances in Nutrition (Bethesda, Md.), 13(2), 492–529. https://doi.org/10.1093/advances/nmab119
Ibáñez, L., Rouleau, M., Wakkach, A., & Blin-Wakkach, C. (2019). Gut microbiome and bone. In Joint Bone Spine (Vol. 86, Issue 1). https://doi.org/10.1016/j.jbspin.2018.02.008
Khalil, Z., Alam, B., Akbari, A. R., & Sharma, H. (2021). The Medical Benefits of Vitamin K2 on Calcium-Related Disorders. Nutrients, 13(2). https://doi.org/10.3390/nu13020691
Kim, C. H. (2023). Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cellular & Molecular Immunology, 20(4), 341–350. https://doi.org/10.1038/s41423-023-00987-1
Kwon, Y., Park, C., Lee, J., Park, D. H., Jeong, S., Yun, C.-H., Park, O.-J., & Han, S. H. (2021). Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns. International Journal of Molecular Sciences, 22(11), 5805. https://doi.org/10.3390/ijms22115805
Li, M., van Esch, B. C. A. M., Wagenaar, G. T. M., Garssen, J., Folkerts, G., & Henricks, P. A. J. (2018). Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European Journal of Pharmacology, 831, 52–59. https://doi.org/10.1016/j.ejphar.2018.05.003
Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-2920.13589
Lucas, S., Omata, Y., Hofmann, J., Böttcher, M., Iljazovic, A., Sarter, K., Albrecht, O., Schulz, O., Krishnacoumar, B., Krönke, G., Herrmann, M., Mougiakakos, D., Strowig, T., Schett, G., & Zaiss, M. M. (2018). Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 9(1), 55. https://doi.org/10.1038/s41467-017-02490-4
Markowiak-Kopeć, P., & Śliżewska, K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients, 12(4). https://doi.org/10.3390/nu12041107
Medina-Gomez, C. (2018). Bone and the gut microbiome: a new dimension. Journal of Laboratory and Precision Medicine, 3. https://doi.org/10.21037/jlpm.2018.11.03
Méndez, L., & Medina, I. (2021). Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules (Basel, Switzerland), 26(9). https://doi.org/10.3390/molecules26092438
Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. In Sports Health (Vol. 14, Issue 6). https://doi.org/10.1177/19417381211060006
Miyamoto, T. (2013). Role of osteoclasts in regulating hematopoietic stem and progenitor cells. World Journal of Orthopedics, 4(4), 198. https://doi.org/10.5312/wjo.v4.i4.198
Pourliotopoulou, E., Karampatakis, T., & Kachrimanidou, M. (2024). Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms, 12(5), 1004. https://doi.org/10.3390/microorganisms12051004
Rivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00979
Schirmer, M., Smeekens, S. P., Vlamakis, H., Jaeger, M., Oosting, M., Franzosa, E. A., ter Horst, R., Jansen, T., Jacobs, L., Bonder, M. J., Kurilshikov, A., Fu, J., Joosten, L. A. B., Zhernakova, A., Huttenhower, C., Wijmenga, C., Netea, M. G., & Xavier, R. J. (2016). Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 167(4), 1125-1136.e8. https://doi.org/10.1016/j.cell.2016.10.020
Seely, K. D., Kotelko, C. A., Douglas, H., Bealer, B., & Brooks, A. E. (2021). The human gut microbiota: A key mediator of osteoporosis and osteogenesis. In International Journal of Molecular Sciences (Vol. 22, Issue 17). https://doi.org/10.3390/ijms22179452
Thomas, S., & Jaganathan, B. G. (2022). Signaling network regulating osteogenesis in mesenchymal stem cells. Journal of Cell Communication and Signaling, 16(1), 47–61. https://doi.org/10.1007/s12079-021-00635-1
Umur, E., Bulut, S. B., Yiğit, P., Bayrak, E., Arkan, Y., Arslan, F., Baysoy, E., Kaleli-Can, G., & Ayan, B. (2024). Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines, 12(8), 1830. https://doi.org/10.3390/biomedicines12081830
Wallimann, A., Magrath, W., Thompson, K., Moriarty, T. F., Richards, R. G., Akdis, C. A., O’mahony, L., & Hernandez, C. J. (2021). Gut microbial-derived short-chain fatty acids and bone: A potential role in fracture healing. European Cells and Materials, 41. https://doi.org/10.22203/eCM.v041a29
Wang, J. S., Yoon, S.-H., & Wein, M. N. (2021). Role of histone deacetylases in bone development and skeletal disorders. Bone, 143, 115606. https://doi.org/10.1016/j.bone.2020.115606
Wang, J., Wu, S., Zhang, Y., Yang, J., & Hu, Z. (2022). Gut microbiota and calcium balance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1033933
Wang, L., You, X., Zhang, L., Zhang, C., & Zou, W. (2022). Mechanical regulation of bone remodeling. Bone Research, 10(1), 16. https://doi.org/10.1038/s41413-022-00190-4
Yahara, Y., Nguyen, T., Ishikawa, K., Kamei, K., & Alman, B. A. (2022). The origins and roles of osteoclasts in bone development, homeostasis and repair. Development, 149(8). https://doi.org/10.1242/dev.199908
Yan, J., Herzog, J. W., Tsang, K., Brennan, C. A., Bower, M. A., Garrett, W. S., Sartor, B. R., Aliprantis, A. O., & Charles, J. F. (2016). Gut microbiota induce IGF-1 and promote bone formation and growth. Proceedings of the National Academy of Sciences, 113(47). https://doi.org/10.1073/pnas.1607235113
Yan, J., Takakura, A., Zandi-Nejad, K., & Charles, J. F. (2018). Mechanisms of gut microbiota-mediated bone remodeling. In Gut microbes (Vol. 9, Issue 1). https://doi.org/10.1080/19490976.2017.1371893
Yan, Q., Cai, L., & Guo, W. (2022). New Advances in Improving Bone Health Based on Specific Gut Microbiota. In Frontiers in Cellular and Infection Microbiology (Vol. 12). https://doi.org/10.3389/fcimb.2022.821429
Zaiss, M. M., Jones, R. M., Schett, G., & Pacifici, R. (2019). The gut-bone axis: how bacterial metabolites bridge the distance. Journal of Clinical Investigation, 129(8), 3018–3028. https://doi.org/10.1172/JCI128521
Zhang, J., Lu, Y., Wang, Y., Ren, X., & Han, J. (2018). The impact of the intestinal microbiome on bone health. In Intractable and Rare Diseases Research (Vol. 7, Issue 3). https://doi.org/10.5582/irdr.2018.01055
Published
How to Cite
Issue
Section
Copyright (c) 2025 Tashvi Kapoor

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


