Function of Pseudomonas fluorescens L5.1-96 proteins MPPE and NADK in wheat root colonization

Authors

  • Julia Zhang Newport High School
  • Stacy Alvares

DOI:

https://doi.org/10.47611/jsrhs.v14i1.8825

Keywords:

metallophosphoesterase, NAD kinase, Pseudomonas, L5.1-96, wheat rhizosphere colonization, Take-All, DNA repair, antibiotic resistance

Abstract

Pseudomonas fluorescens strain L5.1-96 is exceptional at colonizing wheat roots and resisting desiccation, both characteristics valuable to combatting Take-All disease, a devastating wheat root disease caused by the fungal pathogen Gaeumannomyces graminis var. triciti that drastically decreases wheat crop yield in the state of Washington. As a result, the USDA-ARS has generated a genomic library from the genome of strain L5.1-96 to identify genes which may confer these characteristics. In this study, DNA from the clone PF-25A 8 was cultured, purified using the Qiagen Miniprep kit, and sequenced using SL1 and SR2 primers through Eurofins Genomics. Bioinformatics tools BLAST, ORF Finder, MAFFT, and SWISS Model were used to analyze unambiguous base calls. Two notable proteins that may contribute to enhanced survival and colonization were identified: metallophosphoesterase (MPPE) and NAD+ kinase (NADK). The former functions in DNA repair and may improve PF L5.1-96’s colonization by increasing longevity in the wheat rhizosphere, while the latter may enhance survival by conferring a degree of antibiotic resistance and providing protection against bactericides used on farms.

Downloads

Download data is not yet available.

References or Bibliography

Achouak, W., Conrod, S., Cohen, V., & Heulin, T. (2004). Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Molecular plant-microbe interactions : MPMI, 17(8), 872–879. https://doi.org/10.1094/MPMI.2004.17.8.872

Bangera, M. G., & Thomashow, L. S. (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. Journal of bacteriology, 181(10), 3155–3163. https://doi.org/10.1128/JB.181.10.3155-3163.1999

Craig, K., Johnson, B. R., & Grunden, A. (2021). Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Frontiers in microbiology, 12, 660134. https://doi.org/10.3389/fmicb.2021.660134

Ejaz, A., Goldgur, Y., & Shuman, S. (2019). Activity and structure of Pseudomonas putida MPE, a manganese-dependent single-strand DNA endonuclease encoded in a nucleic acid repair gene cluster. The Journal of biological chemistry, 294(19), 7931–7941. https://doi.org/10.1074/jbc.RA119.008049

Matange, N., Podobnik, M., & Visweswariah, S. S. (2015). Metallophosphoesterases: structural fidelity with functional promiscuity. The Biochemical journal, 467(2), 201–216. https://doi.org/10.1042/BJ20150028

Mulvey, K., Brosnan, K., Galvin, M., Mohr, S., Muldowney, L., Oser, M., & Williams, L. E. (2023). Parallel Evolution in Predatory Bdellovibrio sp. NC01 during Long-Term Coculture with a Single Prey Strain. Applied and environmental microbiology, 89(1), e0177622. https://doi.org/10.1128/aem.01776-22

Lemire, J., Kumar, P., Mailloux, R., Cossar, K., & Appanna, V. D. (2008). Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity. Journal of basic microbiology, 48(4), 252–259. https://doi.org/10.1002/jobm.200800007

Rahimova, R., Nogaret, P., Huteau, V., Gelin, M., Clément, D. A., Labesse, G., Pochet, S., Blanc-Potard, A. B., & Lionne, C. (2023). Structure-based design, synthesis and biological evaluation of a NAD+ analogue targeting Pseudomonas aeruginosa NAD kinase. The FEBS journal, 290(2), 482–501. https://doi.org/10.1111/febs.16604

Suresh, P., Rekha, M., Gomathinayagam, S., Ramamoorthy, V., Sharma, M. P., Sakthivel, P., Sekar, K., Valan Arasu, M., & Shanmugaiah, V. (2022). Characterization and Assessment of 2, 4-Diacetylphloroglucinol (DAPG)-Producing Pseudomonas fluorescens VSMKU3054 for the Management of Tomato Bacterial Wilt Caused by Ralstonia solanacearum. Microorganisms, 10(8), 1508. https://doi.org/10.3390/microorganisms10081508

Varivarn, K., Champa, L. A., Silby, M. W., & Robleto, E. A. (2013). Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC microbiology, 13, 92. https://doi.org/10.1186/1471-2180-13-92

Published

02-28-2025

How to Cite

Zhang, J., & Alvares, S. (2025). Function of Pseudomonas fluorescens L5.1-96 proteins MPPE and NADK in wheat root colonization. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8825

Issue

Section

HS Research Articles