Quantifying Doxorubicin Toward Adaptive Chemotherapy with an Electrochemical Aptamer-Based Biosensor
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8771Keywords:
aptamer, cancer, chemotherapy, doxorubicin, therapeutic windowAbstract
Despite more than 100 chemotherapy treatments being available worldwide, 10 million people died of cancer in 2023. Doxorubicin is a common chemotherapy treatment, yet its survival rate is 28% due to its narrow therapeutic window, suggesting cardiotoxicity if slightly overdosed and insufficient anti-cancer effects if underdosed. These statistics highlight the flaws in current chemotherapy regimens, demanding a need for more effective treatment methods. Current chemotherapy dosing calculations do not account for the fact that each patient’s drug response can vary up to ten-fold, stressing the importance of adaptive and personalized dosing for effective treatment. This study outlines the platform framework for an intravenous biosensor to monitor the concentration of doxorubicin using an aptamer as its biorecognition element. Existing sequences determined via SELEX were used to generate an oligonucleotide library of aptamers. These aptamers were further engineered to maintain high affinity while undergoing conformational changes in blood. Computational methodologies and analysis techniques were used to simulate molecular docking. This sensing platform is intricately designed to monitor the concentration of doxorubicin in cancer patients toward effectively tailoring chemotherapy regimens to each patient.
Downloads
References or Bibliography
(1) Pan American Health Organization. World Cancer Day 2023: Close the care gap - PAHO/WHO | Pan American Health Organization. www.paho.org. https://www.paho.org/en/campaigns/world-cancer-day-2023-close-care-gap#:~:text=Globally%2C%20there%20were%20an%20estimated.
(2) Pfeffer, C. M.; Singh, A. T. K. Apoptosis: A Target for Anticancer Therapy. International Journal of Molecular Sciences 2018, 19 (2), 448. https://doi.org/10.3390/ijms19020448.
(3) Gurney, H. How to Calculate the Dose of Chemotherapy. British Journal of Cancer 2002, 86 (8), 1297–1302. https://doi.org/10.1038/sj.bjc.6600139.
(4) American Cancer Society. How Does Chemo Work? | Types of Chemotherapy. www.cancer.org. https://www.cancer.org/cancer/managing-cancer/treatment-types/chemotherapy/how-chemotherapy-drugs-work.htm.
(5) Johnson-Arbor, K.; Dubey, R. Doxorubicin. PubMed. https://www.ncbi.nlm.nih.gov/books/NBK459232/#:~:text=Doxorubicin%20may%20be%20used%20to.
(6) Error. www.bccancer.bc.ca. http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Doxorubicin_monograph.pdf.
(7) Volkova, M.; Russell, R. Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Current Cardiology Reviews 2012, 7 (4), 214–220. https://doi.org/10.2174/157340311799960645.
(8) Jawad, B.; Poudel, L.; Podgornik, R.; Ching, W.-Y. Thermodynamic Dissection of the Intercalation Binding Process of Doxorubicin to DsDNA with Implications of Ionic and Solvent Effects. The Journal of Physical Chemistry B 2020, 124 (36), 7803–7818. https://doi.org/10.1021/acs.jpcb.0c05840.
(9) Mobaraki, M.; Faraji, A.; Zare, M.; Manshadi, H. R. D. Molecular Mechanisms of Cardiotoxicity: A Review on Major Side-Effect of Doxorubicin. Indian Journal of Pharmaceutical Sciences 2017, 79 (3). https://doi.org/10.4172/pharmaceutical-sciences.1000235.
(10) Yang, F.; Teves, S. S.; Kemp, C. J.; Henikoff, S. Doxorubicin, DNA Torsion, and Chromatin Dynamics. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014, 1845 (1), 84–89. https://doi.org/10.1016/j.bbcan.2013.12.002.
(11) Doxorubicin (Intravenous Route) Side Effects - Mayo Clinic. www.mayoclinic.org. https://www.mayoclinic.org/drugs-supplements/doxorubicin-intravenous-route/side-effects/drg-20063553?p=1#:~:text=Doxorubicin%20belongs%20to%20the%20group
(12) Rudek, M. A.; Sparreboom, A.; Garrett-Mayer, E.; Armstrong, D. K.; Wolff, A. C.; Jaap Verweij; Baker, S. D. Factors Affecting Pharmacokinetic Variability Following Doxorubicin and Docetaxel-Based Therapy. PubMed 2004, 40 (8), 1170–1178. https://doi.org/10.1016/j.ejca.2003.12.026.
(13) Chemotherapy tests. www.cancerresearchuk.org. https://www.cancerresearchuk.org/about-cancer/treatment/chemotherapy/planning/chemotherapy-tests#:~:text=Some%20chemotherapy%20drugs%20can%20affect.
(14) Pomili, T.; Gatto, F.; Pompa, P. P. A Lateral Flow Device for Point-of-Care Detection of Doxorubicin. Biosensors 2022, 12 (10), 896. https://doi.org/10.3390/bios12100896.
(15) Doxorubicin (Intravenous Route) Proper Use - Mayo Clinic. www.mayoclinic.org. https://www.mayoclinic.org/drugs-supplements/doxorubicin-intravenous-route/proper-use/drg-20063553?p=1#:~:text=This%20medicine%20is%20given%20through.
(16) Wang, M.; Lin, J.; Gong, J.; Ma, M.; Tang, H.; Liu, J.; Yan, F. Rapid and Sensitive Determination of Doxorubicin in Human Whole Blood by Vertically-Ordered Mesoporous Silica Film Modified Electrochemically Pretreated Glassy Carbon Electrodes. RSC Advances 2021, 11 (15), 9021–9028. https://doi.org/10.1039/d0ra10000e.
(17) Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as Therapeutics. Nature Reviews Drug Discovery 2010, 9 (7), 537–550. https://doi.org/10.1038/nrd3141.
(18) Lakowicz, J. R. Quenching of Fluorescence. Principles of Fluorescence Spectroscopy 2006, 277–330. https://doi.org/10.1007/978-0-387-46312-4_8.
(19) Gleichmann, N. Affinity vs Avidity. from Technology Networks. https://www.technologynetworks.com/immunology/articles/affinity-vs-avidity-333559.
(20) Schonfeld, S. Why are some antibodies so expensive? blog.quartzy.com. https://blog.quartzy.com/why-are-some-antibodies-so-expensive
(21) Kaushal, J.; Singh, G.; Arya, S. K. Chapter 36 - Emerging trends and future prospective in enzyme technology. ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/B9780323899291000366.
(22) Chai, C.; Xie, Z.; Grotewold, E. SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a Powerful Tool for Deciphering the Protein–DNA Interaction Space. Methods in Molecular Biology 2011, 249–258. https://doi.org/10.1007/978-1-61779-154-3_14.
(23) Wochner, A.; Menger, M.; Orgel, D.; Cech, B.; Rimmele, M.; Erdmann, V. A.; Glökler, J. A DNA Aptamer with High Affinity and Specificity for Therapeutic Anthracyclines. Analytical Biochemistry 2008, 373 (1), 34–42. https://doi.org/10.1016/j.ab.2007.09.007.
(24) Manea, I.; Casian, M.; Oana Hosu-Stancioiu; Noemí de-los-Santos-Álvarez; María Jesús Lobo-Castañón; Cristea, C. A Review on Magnetic Beads-Based SELEX Technologies: Applications from Small to Large Target Molecules. Analytica Chimica Acta 2024, 1297, 342325–342325. https://doi.org/10.1016/j.aca.2024.342325.
(25) Markham, N. R.; Zuker, M. UNAFold: Software for Nucleic Acid Folding and Hybridization. Methods in Molecular Biology (Clifton, N.J.) 2008, 2 (1), 3–31. https://doi.org/10.1007/978-1-60327-429-6_1.
(26) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T. Highly Accurate Protein Structure Prediction with Alphafold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
(27) Schrödinger, L.; DeLano, W. The PyMOL Molecular Graphics System, Version~1.8. PyMol. www.pymol.org/pymol
(28) Rosignoli, S.; Paiardini, A. DockingPie: A Consensus Docking Plugin for PyMOL. Bioinformatics 2022, 38 (17), 4233–4234. https://doi.org/10.1093/bioinformatics/btac452.
(29) Oliveira, R.; Pinho, E.; Barros, M. M.; Azevedo, N. F.; Almeida, C. In Vitro Selection of DNA Aptamers against Staphylococcal Enterotoxin A. Scientific Reports 2024, 14, 11345. https://doi.org/10.1038/s41598-024-61094-3.
(30) Mayo Clinic. Hyponatremia - Symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hyponatremia/symptoms-causes/syc-20373711#:~:text=A%20normal%20blood%20sodium%20level.
(31) Reiff Ellis, R. What Is a Magnesium Test? Why Do I Need One? WebMD. https://www.webmd.com/a-to-z-guides/magnesium-test.
(32) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry 2009, 31 (2). https://doi.org/10.1002/jcc.21334.
(33) Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling 2021, 61 (8). https://doi.org/10.1021/acs.jcim.1c00203.
(34) Leung, K. K.; Gerson, J.; Emmons, N.; Roehrich, B.; Verrinder, E.; Fetter, L. C.; Kippin, T. E.; Plaxco, K. W. A Tight Squeeze: Geometric Effects on the Performance of Three-Electrode Electrochemical-Aptamer Based Sensors in Constrained, in Vivo Placements. Analyst 2023, 148 (7), 1562–1569. https://doi.org/10.1039/D2AN02096C.
(35) National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/peripheral-venous-catheter. www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/peripheral-venous-catheter.
(36) Cowan, D. Know your oligo mod: Methylene Blue - LGC. blog.biosearchtech.com. https://blog.biosearchtech.com/know-your-oligo-mod-methylene-blue.
(37) Huang, X.; Duan, C.; Duan, W.; Sun, F.; Cui, H.; Zhang, S.; Chen, X. Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review Author links open overlay panel. Science Direct. https://www.sciencedirect.com/science/article/pii/S0959652621011707.
(38) Rowe, A. A.; White, R. J.; Bonham, A. J.; Plaxco, K. W. Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules. Journal of Visualized Experiments 2011, No. 52. https://doi.org/10.3791/2922.
(39) Counter Electrode - an overview | ScienceDirect Topics. www.sciencedirect.com. https://www.sciencedirect.com/topics/chemistry/counter-electrode.
(40) Analytical Sciences Digital Library. Reference Electrodes. Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Courseware/Analytical_Electrochemistry%3A_Potentiometry/03_Potentiometric_Theory/04_Reference_Electrodes.
(41) Han, K.; Liang, Z.; Zhou, N. Design Strategies for Aptamer-Based Biosensors. Sensors 2010, 10 (5), 4541–4557. https://doi.org/10.3390/s100504541.
(42) Ou, D.; Yan, H.; Chen, Z. An Impedance Labeling Free Electrochemical Aptamer Sensor Based on Tetrahedral DNA Nanostructures for Doxorubicin Determination. Mikrochimica acta 2024, 191 (2). https://doi.org/10.1007/s00604-024-06176-9.
(43) Leung, K. K.; Downs, A. M.; Ortega, G.; Kurnik, M.; Plaxco, K. W. Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sensors 2021, 6 (9), 3340–3347. https://doi.org/10.1021/acssensors.1c01183.
(44) Ferguson, B. S.; Hoggarth, D. A.; Maliniak, D.; Ploense, K.; White, R. J.; Woodward, N.; Hsieh, K.; Bonham, A. J.; Eisenstein, M.; Kippin, T. E.; Plaxco, K. W.; Soh, H. T. Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine 2013, 5 (213). https://doi.org/10.1126/scitranslmed.3007095.
(45) Downs, A. M.; Gerson, J.; Leung, K. K.; Honeywell, K. M.; Kippin, T.; Plaxco, K. W. Improved Calibration of Electrochemical Aptamer-Based Sensors. Scientific Reports 2022, 12 (1). https://doi.org/10.1038/s41598-022-09070-7.
(46) Zaleskis, G.; Garberytė, S.; Pavliukevičienė, B.; Valinčius, G.; Characiejus, D.; Mauricas, M.; Kraśko, J. A.; Žilionytė, K.; Žvirblė, M.; Pašukonienė, V. Doxorubicin Uptake in Ascitic Lymphoma Model: Resistance or Curability Is Governed by Tumor Cell Density and Prolonged Drug Retention. Journal of Cancer 2020, 11 (22), 6497–6506. https://doi.org/10.7150/jca.46066.
(47) Mage, P. L.; Ferguson, B. S.; Maliniak, D.; Ploense, K. L.; Kippin, T. E.; Soh, H. T. Closed-Loop Control of Circulating Drug Levels in Live Animals. Nature Biomedical Engineering 2017, 1 (5), 1–10. https://doi.org/10.1038/s41551-017-0070.
(48) Watkins, Z.; Karajic, A.; Young, T.; White, R.; Heikenfeld, J. Week-Long Operation of Electrochemical Aptamer Sensors: New Insights into Self-Assembled Monolayer Degradation Mechanisms and Solutions for Stability in Serum at Body Temperature. ACS sensors 2023, 8 (3), 1119–1131. https://doi.org/10.1021/acssensors.2c02403.
(49) Wermuth, C. G. Similarity in Drugs: Reflections on Analogue Design. Drug Discovery Today 2006, 11 (7-8), 348–354. https://doi.org/10.1016/j.drudis.2006.02.006.
(50) Venkatesh, P.; Kasi, A. Anthracyclines. PubMed. https://www.ncbi.nlm.nih.gov/books/NBK538187/.
(51) Doxorubicin. go.drugbank.com. https://go.drugbank.com/drugs/DB00997.
(52) Bavi, R.; Hang, Z.; Banerjee, P.; Aquib, M.; Jadhao, M.; Rane, N.; Bavi, S.; Bhosale, R.; Kodam, K.; Jeon, B.-H.; Gu, Y. Doxorubicin-Conjugated Innovative 16-Mer DNA Aptamer-Based Annexin A1 Targeted Anti-Cancer Drug Delivery. Molecular Therapy. Nucleic Acids 2020, 21, 1074–1086. https://doi.org/10.1016/j.omtn.2020.07.038.
(53) ESMO. Doxorubicin remains the gold standard in the first line chemotherapy for patients with advanced or metastatic soft tissue sarcoma. www.esmo.org. https://www.esmo.org/meeting-calendar/past-meetings/esmo-congress-2012/News-Press-Releases/Congress-News/doxorubicin-remains-the-gold-standard-in-the-first-line-chemotherapy-for-patients-with-advanced-or-metastatic-soft-tissue-sarcoma#:~:text=No%20difference%20between%20treatment%20arms.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Emma Chang, Arin Kathapurkar, Ya Ma; Jason Lee

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


