Toxicity and Bioaccumulation of Surface Modified Graphene Quantum Dots in Zebrafish Embryos and Larvae
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8769Keywords:
Functionalized graphene quantum dots, developmental toxicity, bioaccumulation, fluorescence spectroscopy, statistical analysisAbstract
Surface modified Graphene Quantum Dots (GQDs) are an important class of carbon materials widely adopted in fields such as optoelectronics and medicine. However, current research on the potential threat of GQDs on humans and the environment is limited and often lacks comparisons of the biological accumulation and toxicity effects caused by different surface functional group modifications. Therefore, this study compared the toxicity of growth and development, and biological accumulation of amino-functionalized GQDs and carboxyl-functionalized GQDs in zebrafish. The results showed that both amino-functionalized and carboxyl-functionalized GQDs at concentrations of 0.5 mg·L⁻¹ and 5 mg·L⁻¹ significantly inhibited the spontaneous movement of zebrafish, induced pericardial edema and yolk sac edema, and stimulated approximately 50% of the zebrafish to hatch earlier. The type of material and exposure concentration had no significant effect on the zebrafish's heart rate or body length. Additionally, this study used molecular fluorescence spectroscopy to measure the biological accumulation of the two materials in zebrafish after 4 days of exposure. The results indicated that carboxyl-functionalized GQDs had higher accumulation concentration and mass percentage in zebrafish than amino-functionalized GQDs, with a total accumulation of approximately 5.6 μg. Overall, carboxyl-functionalized GQDs exhibited stronger biological accumulation and toxicity effects than amino-functionalized GQDs. This study systematically reveals the differences in biological accumulation and toxicity effects of GQDs with different surface functional groups, providing evidence and a theoretical basis for assessing the ecological risks of GQDs with various surface modifications.
Downloads
References or Bibliography
Porto, L. S., Silva, D. N., Oliveira, A. E. F. d., Pereira, A. C., & Borges, K. B. (2019). Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Reviews in analytical chemistry, 38(3). https://doi.org/doi:10.1515/revac-2019-0017
Lee, J., Mahendra, S., & Alvarez, P. J. J. (2010). Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano, 4(7), 3580-3590. https://doi.org/10.1021/nn100866w
Yoon, J., Shin, M., Lee, T., & Choi, J. W. (2020). Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. Materials(2). https://doi.org/10.3390/ma13020299
Maduraiveeran, G., & Jin, W. (2021). Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering: B, 272, 115341. https://doi.org/https://doi.org/10.1016/j.mseb.2021.115341
Paramasivam, G., Palem, V. V., Meenakshy, S., Suresh, L. K., Gangopadhyay, M., Antherjanam, S., & Sundramoorthy, A. K. (2024). Advances on Carbon Nanomaterials and Their Applications in Medical Diagnosis and Drug Delivery. Colloids and Surfaces B: Biointerfaces, 241. https://doi.org/10.1016/j.colsurfb.2024.114032
Cooper, D. R., D'Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., & Whiteway, E. (2012). Experimental Review of Graphene. Hindawi. https://doi.org/10.5402/2012/501686
Kurapati, R., Kostarelos, K., Prato, M., & Bianco, A. (2016). Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 28(29). https://doi.org/10.1002/adma.201606523
Jastrzbska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14(12), 1320. https://doi.org/10.1007/s11051-012-1320-8
Masciangioli, T., & Zhang, W. X. (2003). Peer Reviewed: Environmental Technologies at the Nanoscale. Environmental Science & Technology, 37(5), 102A-108A. https://doi.org/10.1021/es0323998
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic Potential of Materials at the Nanolevel. Science, 311(5761), 622-627. https://doi.org/doi:10.1126/science.1114397
Rancan, F., Rosan, S., Boehm, F., Cantrell, A., Brellreich, M., Schoenberger, H., Hirsch, A., & Moussa, F. (2002). Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. Journal of Photochemistry and Photobiology B Biology, 67(3), 157-162. https://doi.org/10.1016/S1011-1344(02)00320-2
Zakharova, O. V., Mastalygina, E. E., Golokhvast, K. S., & Gusev, A. A. (2021). Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. Nanomaterials, 11(9), 2425. https://doi.org/10.3390/nano11092425
Chen, B., Liu, Y., Song, W. M., Hayashi, Y., Ding, X. C., & Li, W. H. (2011). In Vitro Evaluation of Cytotoxicity and Oxidative Stress Induced by Multiwalled Carbon Nanotubes in Murine RAW 264.7 Macrophages and Human A549 Lung Cells. Biomedical and Environmental Sciences. https://doi.org/10.3967/0895-3988.2011.06.002
Cui, Y., Liu, L., Shi, M., Wang, Y., Meng, X., Chen, Y., Huang, Q., & Liu, C. (2024). A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application. C, 10(1), 7. https://doi.org/10.3390/c10010007
Chung, S., Revia, R. A., & Zhang, M. (2021). Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. John Wiley & Sons, Ltd(22). https://doi.org/10.1002/adma.201904362
Sheikh Mohd Ghazali, S. A. I., Fatimah, I., Zamil, Z. N., Zulkifli, N. N., & Adam, N. A. (2023). Graphene quantum dots: A comprehensive overview. Open Chemistry, 21. https://doi.org/10.1515/chem-2022-0285
Kansara, V., Shukla, R., Flora, S., Bahadur, P., & Tiwari, S. (2022). Graphene quantum dots: synthesis, optical properties and navigational applications against cancer. Materials Today Communications. https://doi.org/10.1016/j.mtcomm.2022.103359
Rosddi, N. N. M., Fen, Y. W., Anas, N. A. A., Omar, N. A. S., Ramdzan, N. S. M., & Daniyal, W. M. E. M. M. (2020). Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals, 10(10), 875. https://doi.org/10.3390/cryst10100875
Lee, B. H., Stokes, G. A., Valimukhametova, A. R., Nguyen, S., Gonzalez-Rodriguez, R., Bhaloo, A., Coffer, J. L., & Naumov, A. V. (2023). Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots. Nanomaterials, 13. https://doi.org/10.3390/nano13050805
Perini, G., Palmieri, V., Ciasca, G., Spirito, M. D., & Papi, M. (2020). Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. International Journal of Molecular Sciences, 21(10). https://doi.org/10.3390/ijms21103712
Swidan, M. M., Essa, B. M., & Sakr, T. M. (2023). Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnology, 14(1), 1-17. https://doi.org/10.1186/s12645-023-00157-y
Wu, K., Zhou, Q., & Ouyang, S. (2021). Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review. Nanomaterials (Basel, Switzerland), 11(11). https://doi.org/10.3390/nano11112889
Yuan, X., Liu, Z., Guo, Z., Ji, Y., Jin, M., & Wang, X. (2014). Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Research Letters, 9(1), 108. https://doi.org/10.1186/1556-276X-9-108
Deng, S., Fu, A., Junaid, M., Wang, Y., Yin, Q., Fu, C., Liu, L., Su, D. S., Bian, W. P., & Pei, D. S. (2019). Nitrogen-doped graphene quantum dots (N-GQDs) perturb redox-sensitive system via the selective inhibition of antioxidant enzyme activities in zebrafish. Biomaterials, 206, 61-72. https://doi.org/10.1016/j.biomaterials.2019.03.028
Li, M., Gu, M. M., Tian, X., Xiao, B. B., Lu, S., Zhu, W., Yu, L., & Shang, Z. F. (2018). Hydroxylated-graphene quantum dots induce DNA damage and disrupt microtubule structure in human esophageal epithelial cells. Toxicological Sciences An Official Journal of the Society of Toxicology(1), 339-352. https://doi.org/10.1093/toxsci/kfy090
Liang, L., Shen, X., Zhou, M., Chen, Y., Lu, X., Zhang, L., Wang, W., & Shen, J.-W. (2022). Theoretical Evaluation of Potential Cytotoxicity of Graphene Quantum Dot to Adsorbed DNA. Materials, 15(21), 7435. https://doi.org/10.3390/w13162203
Achawi, S., Pourchez, J., Feneon, B., & Forest, V. (2021). Graphene-Based Materials In Vitro Toxicity and Their Structure-Activity Relationships: A Systematic Literature Review. Chemical research in toxicology, 34(9), 2003-2018. https://doi.org/10.1021/acs.chemrestox.1c00243
Li, H., Liu, Y., Chen, Q., Jin, L., & Peng, R. (2023). Research Progress of Zebrafish Model in Aquatic Ecotoxicology. Water, 15(9), 1735. https://doi.org/10.3390/w15091735
Verma, S. K., Nandi, A., Sinha, A., Patel, P., Jha, E., Mohanty, S., Panda, P. K., Ahuja, R., Mishra, Y. K., & Suar, M. (2021). Zebrafish (Danio rerio) as an ecotoxicological model for Nanomaterial induced toxicity profiling. Precision Nanomedicine. https://doi.org/10.33218/001c.21978
Westerfield, M. (1995). The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio).
Cahova, J., Blahova, J., Plhalova, L., Svobodova, Z., & Faggio, C. (2021). Do Single-Component and Mixtures Selected Organic UV Filters Induce Embryotoxic Effects in Zebrafish (Danio rerio)? Water, 13(16), 2203. https://doi.org/10.3390/w13162203
Kovrižnych, J. A., Sotníková, R., Zeljenková, D., Rollerová, E., & Szabová, E. (2014). Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdisciplinary toxicology, 7(1), 23-26. https://doi.org/10.2478/intox-2014-0004
Pham, D.-H., De Roo, B., Nguyen, X.-B., Vervaele, M., Kecskés, A., Ny, A., Copmans, D., Vriens, H., Locquet, J.-P., Hoet, P., & de Witte, P. A. M. (2016). Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles. Scientific reports, 6(1), 37145. https://doi.org/10.1038/srep37145
Maria Violetta, B., & Antonio, S. (2018). Zebrafish or Danio rerio: A New Model in Nanotoxicology Study. In B. Yusuf (Ed.), Recent Advances in Zebrafish Researches (pp. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.74834
King-Heiden, T. C., Wiecinski, P. N., Mangham, A. N., Metz, K. M., Nesbit, D., Pedersen, J. A., Hamers, R. J., Heideman, W., & Peterson, R. E. (2009). Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo. Environmental Science & Technology, 43(5), 1605-1611. https://doi.org/10.1021/es801925c
Jones, H. B., Garside, D. A., Liu, R., & Roberts, J. C. (1993). The influence of phthalate esters on Leydig cell structure and function in vitro and in vivo. Experimental and molecular pathology, 58(3), 179-193. https://doi.org/10.1006/exmp.1993.1016
Saint-Amant, L., & Drapeau, P. (1998). Time course of the development of motor behaviors in the zebrafish embryo. Journal of neurobiology, 37(4), 622-632. https://doi.org/10.1002/(sici)1097-4695(199812)37:4<622::aid-neu10>3.0.co;2-s
Sztal, T., Ruparelia, A., Williams, C., & Bryson-Richardson, R. (2016). Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish. Journal of Visualized Experiments, 2016. https://doi.org/10.3791/54431
Deng, S., Zhang, E., Tao, J., Zhao, Y., Huo, W., Guo, H., Zheng, B., Mu, X., Yuan, K., Deng, X., Shen, H., Rong, H., Ma, Y., & Bian, W. (2023). Graphene quantum dots (GQDs) induce thigmotactic effect in zebrafish larvae via modulating key genes and metabolites related to synaptic plasticity. Toxicology, 487, 153462. https://doi.org/10.1016/j.tox.2023.153462
Sun, H., Wang, M., Wang, J., & Wang, W. (2022). Surface charge affects foliar uptake, transport and physiological effects of functionalized graphene quantum dots in plants. Science of The Total Environment, 812, 151506. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151506
Liu, Z., Li, F., Luo, Y., Li, M., Hu, G., Pu, X., Tang, T., Wen, J., Li, X., & Li, W. (2021). Size Effect of Graphene Quantum Dots on Photoluminescence. Molecules (Basel, Switzerland), 26(13), 3922. https://doi.org/10.3390/molecules26133922
Published
How to Cite
Issue
Section
Copyright (c) 2025 Hanqiao Li; Bo Li, Haotian Chen, Wenhong Fan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


