Development of Machine Learning model for Drought Prediction
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8737Keywords:
Drought Prediction, Machine Learning, Random Forest Model, Meteorological Data, Soil dataAbstract
This research develops a machine learning model for drought prediction using the Random Forest algorithm, employing historical meteorological and soil data to deliver precise drought forecasts. Accurate drought prediction is essential for alleviating negative impacts on agriculture and water resources; however, conventional methods frequently lack precision. This study employs extensive data preprocessing, feature selection, and model training to develop a stable and interpretable predictive model. The algorithm, integrated with an interactive Streamlit application, allows stakeholders to submit data and receive real-time drought predictions. The evaluation criteria, such as accuracy, precision, and recall, demonstrate that the model successfully identifies the links between environmental variables and drought severity. The Random Forest model has robustness and interpretability, making it a significant asset for policymakers, agricultural planners, and researchers. This study also provides a user-friendly yet scientifically robust instrument for proactive drought management and highlights potential avenues for improved model precision and scalability.
Downloads
References or Bibliography
Arash Tashakkori, Niloufar Erfanibehrouz, Shahin Mirshekari, Abolfazl Sodagartojgi, & Vatsal Gupta. (2024). Enhancing stock market prediction accuracy with recurrent deep learning models: A case study on the CAC40 index. World Journal of Advanced Research and Reviews, 23(1), 2309–2321. https://doi.org/10.30574/wjarr.2024.23.1.2156
Ayinla, B., & Abdulsalam, R. (2024a). Exploring a Novel Approach of K-mean Gradient Boosting Algorithm with PCA for Drought Prediction. American Journal of Data Mining and Knowledge Discovery, 9(1), 1–19. https://doi.org/10.11648/j.ajdmkd.20240901.11
Ayinla, B., & Abdulsalam, R. (2024b). Exploring a Novel Approach of K-mean Gradient Boosting Algorithm with PCA for Drought Prediction. American Journal of Data Mining and Knowledge Discovery, 9(1), 1–19. https://doi.org/10.11648/j.ajdmkd.20240901.11
Choesang, T., Ryntathiang, S., Jacob, B. A., Krishnan, B., & Kokatnoor, S. A. (2023). Drought Prediction—A Comparative Analysis of Supervised Machine Learning Techniques (pp. 295–307). https://doi.org/10.1007/978-981-99-2468-4_23
Duong, H. H., Phong, N. D., Ha, T. L., Tang, T. D., Trinh, T. N., Nguyen, T. M., & Nguyen, T. M. (2024). Application of Machine Learning to Forecast Drought Index for the Mekong Delta. https://doi.org/10.20944/preprints202405.1693.v1
Kang, D., & Byun, K. (2024). Development of a Multi-Scale Groundwater Drought Prediction Model Using Deep Learning and Hydrometeorological Data. Water, 16(14), 2036. https://doi.org/10.3390/w16142036
Katipoğlu, O. M., Ertugay, N., Elshaboury, N., Aktürk, G., Kartal, V., & Pande, C. B. (2024). A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting. Physics and Chemistry of the Earth, Parts A/B/C, 135, 103646. https://doi.org/10.1016/j.pce.2024.103646
Koutroulis, A., Grillakis, M., Gosling, S., Schmied, H. M., Burek, P., Kou-Giesbrecht, S., Qi, W., Pokhrel, Y., Satoh, Y., Tsanis, I., Stein, L., & Thiery, W. (2024). Examining the contribution of climate change on global soil moisture drought characteristics. https://doi.org/10.5194/egusphere-plinius18-46
Liu, R., Yin, J., Slater, L., Kang, S., Yang, Y., Liu, P., Guo, J., Gu, X., Zhang, X., & Volchak, A. (2024). Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China. Hydrology and Earth System Sciences, 28(14), 3305–3326. https://doi.org/10.5194/hess-28-3305-2024
Magallanes-Quintanar, R., Galván-Tejada, C. E., Galván-Tejada, J. I., Gamboa-Rosales, H., Méndez-Gallegos, S. de J., & García-Domínguez, A. (2024). Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico. Climate, 12(7), 102. https://doi.org/10.3390/cli12070102
Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., & Righetti, M. (2024). Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling & Software, 174, 105971. https://doi.org/10.1016/j.envsoft.2024.105971
Reddy, C. V., Reddy, N. V. U., Sharma, S., Kumar, J. P., Lakhanpal, S., & Albawi, A. (2024). Advanced Deep Learning Architectures for Real-Time Human Emotion Recognition and Behavioral Prediction. 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), 1306–1311. https://doi.org/10.1109/IC3SE62002.2024.10592940
Rezaiy, R., & Shabri, A. (2024). Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index. Water Science & Technology, 89(3), 745–770. https://doi.org/10.2166/wst.2024.028
Simarmata, J. E., Weber, G.-W., & Chrisinta, D. (2024). Performance Evaluation of Classification Methods on Big Data: Decision Trees, Naive Bayes, K-Nearest Neighbors, and Support Vector Machines. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 623–638. https://doi.org/10.20956/j.v20i3.32970
Song, C. E., Li, Y., Ramnani, A., Agrawal, P., Agrawal, P., Jang, S.-J., Lee, S.-S., Rosing, T., & Kang, M. (2024). 52.5 TOPS/W 1.7GHz Reconfigurable XGBoost Inference Accelerator Based on Modular-Unit-Tree with Dynamic Data and Compute Gating. 2024 IEEE Custom Integrated Circuits Conference (CICC), 1–2. https://doi.org/10.1109/CICC60959.2024.10529017
Song, Y., Joo, J., Kim, H., & Park, M. (2024). Development and Applicability Evaluation of Damage Scale Analysis Techniques for Agricultural Drought. Water, 16(10), 1342. https://doi.org/10.3390/w16101342
TIWARI, M., & Manthankumar P. Brahmbhatt. (2024). Forecasting Drought Indices using Artificial Neural Network and M5 Model Tree Techniques in Middle Gujarat Region of India. Journal of Agricultural Engineering (India), 61(3), 413–431. https://doi.org/10.52151/jae2024613.1856
Tuğrul, T., & Hinis, M. A. (2024). Improvement of drought forecasting by means of various machine learning algorithms and wavelet transformation. Acta Geophysica. https://doi.org/10.1007/s11600-024-01399-z
Xu, X., Chen, F., Wang, B., Harrison, M. T., Chen, Y., Liu, K., Zhang, C., Zhang, M., Zhang, X., Feng, P., & Hu, K. (2024). Unleashing the power of machine learning and remote sensing for robust seasonal drought monitoring: A stacking ensemble approach. Journal of Hydrology, 634, 131102. https://doi.org/10.1016/j.jhydrol.2024.131102
Zhang, J.-L., Huang, X.-M., & Sun, Y.-Z. (2024). Multiscale spatiotemporal meteorological drought prediction: A deep learning approach. Advances in Climate Change Research, 15(2), 211–221. https://doi.org/10.1016/j.accre.2024.04.003
Published
How to Cite
Issue
Section
Copyright (c) 2025 Anika Pallapothu

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


