Satellite Congestion in Earth's Orbits: Exploratory Data and Correlation Analysis of Trends and Future Implications Using Python
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8633Keywords:
Space Industry, Satellites, Earth Orbits, Python, Overcrowding, Space Traffic ManagementAbstract
The increasing number of satellites in Earth’s orbit has raised concerns about overcrowding and the potential risks of collisions and debris formation. This study analyzes datasets on satellite launches, types (government, commercial, and private), and their orbital altitudes to explore the overcrowding of Earth’s orbits. By using Python and libraries such as Pandas and Matplotlib, this research visualizes trends in satellite deployment and identifies potential future challenges for space traffic management. Additionally, the study explores possible future directions for the space industry, focusing on regulation and technology to mitigate overcrowding.
Downloads
References or Bibliography
Ailor, W. H., & Patera, R. P. (2006). Space Debris and Mitigation Measures. Aerospace America, 44(8), 22-26. doi:10.2514/1.22233
Anderson, R. C., & Holladay, R. G. (2018). An Overview of Mega-Constellations and Their Impact on Low Earth Orbit. International Journal of Satellite Communications and Networking, 36(2), 123-139. doi:10.1002/sat.1229
Boley, A. C., & Byers, M. (2021). Satellite Mega-Constellations Create Risks in Low Earth Orbit, the Atmosphere and on Earth. Scientific Reports, 11(1), 1-8. doi:10.1038/s41598-021-83757-3
European Space Agency (ESA). (2020). Space Debris and Human Spacecraft. ESA Space Debris Office. Retrieved from https://www.esa.int/Safety_Security/Space_Debris
Kessler, D. J., & Cour-Palais, B. G. (1978). Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. Journal of Geophysical Research: Space Physics, 83(A6), 2637-2646. doi:10.1029/JA083iA06p02637
Liou, J.-C., & Johnson, N. L. (2009). A Comparison of Two Collision Probability Algorithms. Advances in Space Research, 43(8), 1371-1375. doi:10.1016/j.asr.2008.10.033
Matney, M. J., & Anz-Meador, P. D. (2015). Space Traffic Management and Space Situational Awareness. NASA Orbital Debris Quarterly News, 19(1), 3-7. Retrieved from https://orbitaldebris.jsc.nasa.gov/quarterly-news/
McKnight, D. S., Di Pentino, F., & Kapoor, K. (2017). Space Traffic Management in the New Space Era. Aerospace Corporation Report, 45(3), 9-15. Retrieved from https://aerospace.org/sites/default/files/2017-07/McKnight-DiPentinoKapoor_NewSpaceEra_060917.pdf
Shoemaker, M., & Raj, V. (2022). Implementing AI in Space Traffic Management for Collision Avoidance. Journal of Aerospace Information Systems, 19(5), 178-185. doi:10.2514/1.I010991
Union of Concerned Scientists (UCS). (2023). UCS Satellite Database. Retrieved from https://www.ucsusa.org/resources/satellite-database
Wang, Z., & Xu, H. (2020). Application of Small Satellites in the Modern Space Industry. Space Policy, 51, 101353. doi:10.1016/j.spacepol.2019.101353
Published
How to Cite
Issue
Section
Copyright (c) 2025 Aditya Shrivastava; Michael Karin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


