A Basic Overview of Cellulose Nanocrystals
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8618Keywords:
Cellulose Nanocrystals, OverviewAbstract
This paper discusses the various aspects of cellulose nanocrystals, including its extraction, mechanical properties, surface modifications, and medical applications. Cellulose nanocrystals are extracted from cellulose, one of the most common polymers in nature. Cellulose nanocrystals are unique as they can be extracted from organic material making them widely abundant and renewable but they also possess incredible mechanical properties. Cellulose nanocrystals’ theoretical tensile strength could be around 10 GPa and its theoretical elastic modulus could be 120+ GPa. In addition to its already desirable mechanical properties the crystals can still be further modified to bestow them with specific characteristics such as oxidation to increase thermal stability. The crystals' combination of being organic, compatible with modifications, alongside its mechanical properties makes it a material of interest in a multitude of fields. One of the fields that cellulose nanocrystals can shine in is the biomedical field, where they can act as materials for biosensors, tissue reparation scaffolding, or drug delivery systems.
Downloads
References or Bibliography
George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, science and applications, 45-54.
Norizan, M. N., Shazleen, S. S., Alias, A. H., Sabaruddin, F. A., Asyraf, M. R. M., Zainudin, E. S., ... & Norrrahim, M. N. F. (2022). Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomaterials, 12(19), 3483.
Ribeiro, R. S., Pohlmann, B. C., Calado, V., Bojorge, N., & Pereira Jr, N. (2019). Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Engineering in Life Sciences, 19(4), 279-291.
Xing, L., Gu, J., Zhang, W., Tu, D., & Hu, C. (2018). Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydrate polymers, 192, 184-192.
Gautam, S. P., Bundela, P. S., Pandey, A. K., Jamaluddin, J., Awasthi, M. K., & Sarsaiya, S. (2010). A review on systematic study of cellulose. Journal of Applied and Natural Science, 2(2), 330-343.
Shojaeiarani, J., Bajwa, D. S., & Chanda, S. (2021). Cellulose nanocrystal based composites: A review. Composites Part C: Open Access, 5, 100164.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Listyanda, R. F., Wildan, M. W., & Ilman, M. N. (2020). Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon, 6(11).
Nagy, S., Fekete, E., Móczó, J., Koczka, K., & Csiszár, E. (2020). Heat-induced changes in cellulose nanocrystal/amino-aldehyde biocomposite systems. Journal of Thermal Analysis and Calorimetry, 142, 2371-2383.
Mujtaba, M., Negi, A., King, A. W., Zare, M., & Kuncova-Kallio, J. (2023). Surface modifications of nanocellulose for drug delivery applications; a critical review. Current Opinion in Biomedical Engineering, 28, 100475.
Marwanto, M., Maulana, M. I., Febrianto, F., Wistara, N. J., Nikmatin, S., Masruchin, N., ... & Kim, N. H. (2021). Effect of oxidation time on the properties of cellulose nanocrystals prepared from balsa and kapok fibers using ammonium persulfate. Polymers, 13(11), 1894.
Eyley, S., & Thielemans, W. (2014). Surface modification of cellulose nanocrystals. Nanoscale, 6(14), 7764-7779.
Cheng, D., Wen, Y., Wang, L., An, X., Zhu, X., & Ni, Y. (2015). Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydrate polymers, 123, 157-163.
Zheng, T., Clemons, C. M., & Pilla, S. (2021). Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film. Carbohydrate polymers, 271, 118405.
Munawaroh, H. S. H., Anwar, B., Yuliani, G., Murni, I. C., Arindita, N. P. Y., Maulidah, G. S., ... & Show, P. L. (2023). Bacterial cellulose nanocrystal as drug delivery system for overcoming the biological barrier of cyano-phycocyanin: a biomedical application of microbial product. Bioengineered, 14(1), 2252226.
Osorio, D. (2017). Cellulose Nanocrystal Aerogels: Processing Techniques and Bone Scaffolding Applications (Doctoral dissertation).
Tracey, C. T., Torlopov, M. A., Martakov, I. S., Vdovichenko, E. A., Zhukov, M., Krivoshapkin, P. V., ... & Krivoshapkina, E. F. (2020). Hybrid cellulose nanocrystal/magnetite glucose biosensors. Carbohydrate polymers, 247, 116704.
Murizan, N. I. S., Mustafa, N. S., Ngadiman, N. H. A., Mohd Yusof, N., & Idris, A. (2020). Review on nanocrystalline cellulose in bone tissue engineering applications. Polymers, 12(12), 2818.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Ming Yang Chang

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


