The Future of Metallodrugs: Cost, Environmental Impact, Research Investments, and Clinical Trials
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8573Keywords:
metallodrugs, future of metallodrugs, medicinal inorganic chemistry, cancer therapies, potential of metallodrugsAbstract
Metallodrugs are unique prodrugs developed from metals and provide distinctive benefits as they supply the human body with vital nutrients and chemical compounds not present in organic medications. Historically, metallodrugs have primarily been platinum-based and have been utilized in cancer treatment. This has resulted in high levels of cytotoxicity for patients, high costs, and low variability in treatments. Based on this literature review using ScienceDirect, Pubmed, and Google Scholar, including published academic, scientific, and medical research articles relating to the use and manufacturing of metallodrugs, this study explores the scope and impact that metallodrugs could have in the future. Considering the rising demand for new medications and therapies for diseases, metallodrugs will play a key role in the future, especially with recent advancements. In terms of cost, metallodrugs have dropped in price due to innovations using more common, cost-effective materials in key processes such as metal catalysis. Furthermore, coinciding with recent environmental awareness, the new technique of mechanochemistry, which is being researched globally, represents a future of metallodrug development that causes minimal harm to the environment. Also, there has been an uptick in research for applications of metallodrugs in other fields, beyond cancer treatment. For example, IQG-607 has shown promising results for treating new, resistant strains of tuberculosis. In the future, expanding research into different fields for metallodrug application will help to improve medication and make it more accessible to a larger number of people.
Downloads
References or Bibliography
A. Southern, S., & L. Bryce, D. (2021). Annual Reports on NMR Spectroscopy (Vol. 102). Elsevier Inc.
Abbadi, B. L., Da Silva Rodrigues-Junior, V., Da Silva Dadda, A., Pissinate, K., Villela, A. D., Campos, M. M., De França Lopes, L. G., Bizarro, C. V., Machado, P., Sousa, E. H. S., & Basso, L. A. (2018). Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00880
André, V., Duarte, M. T., Gomes, C. S. B., & Sarraguça, M. C. (2021). Mechanochemistry in Portugal—A Step towards Sustainable Chemical Synthesis. Molecules, 27(1), 241. https://doi.org/10.3390/molecules27010241
Anthony, E. J., Bolitho, E. M., Bridgewater, H. E., Carter, O. W. L., Donnelly, J. M., Imberti, C., Lant, E. C., Lermyte, F., Needham, R. J., Palau, M., Sadler, P. J., Shi, H., Wang, F., Zhang, W., & Zhang, Z. (2020). Metallodrugs are unique: opportunities and challenges of discovery and development. Chemical Science, 11(48), 12888–12917. https://doi.org/10.1039/d0sc04082g
Bartholomä, M. D., Louie, A. S., Valliant, J. F., & Zubieta, J. (2010). Technetium and Gallium Derived Radiopharmaceuticals: Comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chemical Reviews, 110(5), 2903–2920. https://doi.org/10.1021/cr1000755
Basso, L. A., Schneider, C. Z., Santos, A. J. a. B. D., Santos, A. a. D., Jr, Campos, M. M., Souto, A. A., & Santos, D. S. (2010). An inorganic complex that inhibits Mycobacterium tuberculosis enoyl reductase as a prototype of a new class of chemotherapeutic agents to treat tuberculosis. Journal of the Brazilian Chemical Society, 21(7), 1384–1389. https://doi.org/10.1590/s0103-50532010000700026
Bergamo, A., & Sava, G. (2007). Ruthenium complexes can target determinants of tumour malignancy. Dalton Transactions, 13, 1267. https://doi.org/10.1039/b617769g
Bhargava, A., & Vaishampayan, U. N. (2009). Satraplatin: leading the new generation of oral platinum agents. Expert Opinion on Investigational Drugs, 18(11), 1787–1797. https://doi.org/10.1517/13543780903362437
Charest, G., Sanche, L., Fortin, D., Mathieu, D., & Paquette, B. (2013). Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain. Journal of neuro-oncology, 115, 365-373.
Chen, S., Zhou, G., Zhang, X., Mao, J., De Thé, H., & Chen, Z. (2011). From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood, 117(24), 6425–6437. https://doi.org/10.1182/blood-2010-11-283598
Do, J., & Friščić, T. (2016). Mechanochemistry: a force of synthesis. ACS Central Science, 3(1), 13–19. https://doi.org/10.1021/acscentsci.6b00277
Eckford, C. (2023, February 16). European Commission awards €7.7 million to Mechanochemistry Project. European Pharmaceutical Review. https://www.europeanpharmaceuticalreview.com/news/179571/european-commission-awards-e7-7-million-to-mechanochemistry-project/
Frei, A., Zuegg, J., Elliott, A. G., Baker, M., Braese, S., Brown, C., Chen, F., G Dowson, C., Dujardin, G., Jung, N., King, A. P., Mansour, A. M., Massi, M., Moat, J., Mohamed, H. A., Renfrew, A. K., Rutledge, P. J., Sadler, P. J., Todd, M. H., Willans, C. E., … Blaskovich, M. A. T. (2020). Metal complexes as a promising source for new antibiotics. Chemical science, 11(10), 2627–2639. https://doi.org/10.1039/c9sc06460e
Hernández, J. G., Halasz, I., Crawford, D. E., Krupicka, M., Baláž, M., André, V., Vella‐Zarb, L., Niidu, A., García, F., Maini, L., & Colacino, E. (2020). European Research in focus: Mechanochemistry for Sustainable Industry (COST Action MEchSUSTINd ). European Journal of Organic Chemistry, 2020(1), 8–9. https://doi.org/10.1002/ejoc.201901718
Imberti, C., Lok, J., Coverdale, J. P. C., Carter, O. W. L., Fry, M. E., Postings, M. L., Kim, J., Firth, G., Blower, P. J., & Sadler, P. J. (2023). Radiometal-Labeled Photoactivatable PT(IV) anticancer complex for theranostic phototherapy. Inorganic Chemistry, 62(50), 20745–20753. https://doi.org/10.1021/acs.inorgchem.3c02245
IMPACTIVE. (2024, July 16). Our project - IMPACTIVE. IMPACTIVE - Mechanochemistry Towards Greener Pharmaceuticals. https://mechanochemistry.eu/our-project/
James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413–447. https://doi.org/10.1039/c1cs15171a
Kabir, E., Noyon, M. K., & Hossain, M. A. (2023). Synthesis, biological and medicinal impacts of metallodrugs: A study. Results in Chemistry, 5, 100935. https://doi.org/10.1016/j.rechem.2023.100935
Lucaciu, R. L., Hangan, A. C., Sevastre, B., & Oprean, L. S. (2022). Metallo-Drugs in cancer therapy: Past, present and future. Molecules, 27(19), 6485. https://doi.org/10.3390/molecules27196485
Mjos, K. D., & Orvig, C. (2014). Metallodrugs in Medicinal Inorganic chemistry. Chemical Reviews, 114(8), 4540–4563. https://doi.org/10.1021/cr400460s
Ober, H. (2023, November 22). UCLA chemists use oxygen, copper ‘scissors’ to make cheaper drug treatments possible. UCLA. https://newsroom.ucla.edu/releases/chemists-oxygen-copper-less-expensive-drug-treatments
Quaresma, S., André, V., Fernandes, A., & Duarte, M. T. (2016). Mechanochemistry – A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimica Acta, 455, 309–318. https://doi.org/10.1016/j.ica.2016.09.033
Rodrigues-Junior, V. S., Villela, A. D., Abbadi, B. L., Sperotto, N. D., Pissinate, K., Picada, J. N., Da Silva, J. B., Bizarro, C. V., Machado, P., & Basso, L. A. (2019). Nonclinical evaluation of IQG-607, an anti-tuberculosis candidate with potential use in combination drug therapy. Regulatory Toxicology and Pharmacology, 111, 104553. https://doi.org/10.1016/j.yrtph.2019.104553
Santos, D. (2014). Activity of IQG-607, a new orally active compound in a murine model of Mycobacterium tuberculosis infection. BMC Proceedings, 8(S4). https://doi.org/10.1186/1753-6561-8-s4-o8
Trento, C. (2023, December 27). Advantages of Precious Metal Catalysts. samaterials.com. https://www.samaterials.com/advantages-of-precious-metal-catalysts.html
Wagner, P. (2019). Metallodrugs and their various impacts on disorders and diseases. Chemistry & Biochemistry Student Projects. https://pillars.taylor.edu/chemistry-student/23
Zimmermann, G. R., Lehár, J., & Keith, C. T. (2006). Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discovery Today, 12(1–2), 34–42. https://doi.org/10.1016/j.drudis.2006.11.008
Published
How to Cite
Issue
Section
Copyright (c) 2025 Sanjitha Reddy

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


