The Future of Metallodrugs: Cost, Environmental Impact, Research Investments, and Clinical Trials

Authors

  • Sanjitha Reddy Wayne Hills High School

DOI:

https://doi.org/10.47611/jsrhs.v14i1.8573

Keywords:

metallodrugs, future of metallodrugs, medicinal inorganic chemistry, cancer therapies, potential of metallodrugs

Abstract

Metallodrugs are unique prodrugs developed from metals and provide distinctive benefits as they supply the human body with vital nutrients and chemical compounds not present in organic medications. Historically, metallodrugs have primarily been platinum-based and have been utilized in cancer treatment. This has resulted in high levels of cytotoxicity for patients, high costs, and low variability in treatments. Based on this literature review using ScienceDirect, Pubmed, and Google Scholar, including published academic, scientific, and medical research articles relating to the use and manufacturing of metallodrugs, this study explores the scope and impact that metallodrugs could have in the future. Considering the rising demand for new medications and therapies for diseases, metallodrugs will play a key role in the future, especially with recent advancements. In terms of cost, metallodrugs have dropped in price due to innovations using more common, cost-effective materials in key processes such as metal catalysis. Furthermore, coinciding with recent environmental awareness, the new technique of mechanochemistry, which is being researched globally, represents a future of metallodrug development that causes minimal harm to the environment. Also, there has been an uptick in research for applications of metallodrugs in other fields, beyond cancer treatment. For example, IQG-607 has shown promising results for treating new, resistant strains of tuberculosis. In the future, expanding research into different fields for metallodrug application will help to improve medication and make it more accessible to a larger number of people.

Downloads

Download data is not yet available.

References or Bibliography

A. Southern, S., & L. Bryce, D. (2021). Annual Reports on NMR Spectroscopy (Vol. 102). Elsevier Inc.

Abbadi, B. L., Da Silva Rodrigues-Junior, V., Da Silva Dadda, A., Pissinate, K., Villela, A. D., Campos, M. M., De França Lopes, L. G., Bizarro, C. V., Machado, P., Sousa, E. H. S., & Basso, L. A. (2018). Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00880

André, V., Duarte, M. T., Gomes, C. S. B., & Sarraguça, M. C. (2021). Mechanochemistry in Portugal—A Step towards Sustainable Chemical Synthesis. Molecules, 27(1), 241. https://doi.org/10.3390/molecules27010241

Anthony, E. J., Bolitho, E. M., Bridgewater, H. E., Carter, O. W. L., Donnelly, J. M., Imberti, C., Lant, E. C., Lermyte, F., Needham, R. J., Palau, M., Sadler, P. J., Shi, H., Wang, F., Zhang, W., & Zhang, Z. (2020). Metallodrugs are unique: opportunities and challenges of discovery and development. Chemical Science, 11(48), 12888–12917. https://doi.org/10.1039/d0sc04082g

Bartholomä, M. D., Louie, A. S., Valliant, J. F., & Zubieta, J. (2010). Technetium and Gallium Derived Radiopharmaceuticals: Comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chemical Reviews, 110(5), 2903–2920. https://doi.org/10.1021/cr1000755

Basso, L. A., Schneider, C. Z., Santos, A. J. a. B. D., Santos, A. a. D., Jr, Campos, M. M., Souto, A. A., & Santos, D. S. (2010). An inorganic complex that inhibits Mycobacterium tuberculosis enoyl reductase as a prototype of a new class of chemotherapeutic agents to treat tuberculosis. Journal of the Brazilian Chemical Society, 21(7), 1384–1389. https://doi.org/10.1590/s0103-50532010000700026

Bergamo, A., & Sava, G. (2007). Ruthenium complexes can target determinants of tumour malignancy. Dalton Transactions, 13, 1267. https://doi.org/10.1039/b617769g

Bhargava, A., & Vaishampayan, U. N. (2009). Satraplatin: leading the new generation of oral platinum agents. Expert Opinion on Investigational Drugs, 18(11), 1787–1797. https://doi.org/10.1517/13543780903362437

Charest, G., Sanche, L., Fortin, D., Mathieu, D., & Paquette, B. (2013). Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain. Journal of neuro-oncology, 115, 365-373.

Chen, S., Zhou, G., Zhang, X., Mao, J., De Thé, H., & Chen, Z. (2011). From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood, 117(24), 6425–6437. https://doi.org/10.1182/blood-2010-11-283598

Do, J., & Friščić, T. (2016). Mechanochemistry: a force of synthesis. ACS Central Science, 3(1), 13–19. https://doi.org/10.1021/acscentsci.6b00277

Eckford, C. (2023, February 16). European Commission awards €7.7 million to Mechanochemistry Project. European Pharmaceutical Review. https://www.europeanpharmaceuticalreview.com/news/179571/european-commission-awards-e7-7-million-to-mechanochemistry-project/

Frei, A., Zuegg, J., Elliott, A. G., Baker, M., Braese, S., Brown, C., Chen, F., G Dowson, C., Dujardin, G., Jung, N., King, A. P., Mansour, A. M., Massi, M., Moat, J., Mohamed, H. A., Renfrew, A. K., Rutledge, P. J., Sadler, P. J., Todd, M. H., Willans, C. E., … Blaskovich, M. A. T. (2020). Metal complexes as a promising source for new antibiotics. Chemical science, 11(10), 2627–2639. https://doi.org/10.1039/c9sc06460e

Hernández, J. G., Halasz, I., Crawford, D. E., Krupicka, M., Baláž, M., André, V., Vella‐Zarb, L., Niidu, A., García, F., Maini, L., & Colacino, E. (2020). European Research in focus: Mechanochemistry for Sustainable Industry (COST Action MEchSUSTINd ). European Journal of Organic Chemistry, 2020(1), 8–9. https://doi.org/10.1002/ejoc.201901718

Imberti, C., Lok, J., Coverdale, J. P. C., Carter, O. W. L., Fry, M. E., Postings, M. L., Kim, J., Firth, G., Blower, P. J., & Sadler, P. J. (2023). Radiometal-Labeled Photoactivatable PT(IV) anticancer complex for theranostic phototherapy. Inorganic Chemistry, 62(50), 20745–20753. https://doi.org/10.1021/acs.inorgchem.3c02245

IMPACTIVE. (2024, July 16). Our project - IMPACTIVE. IMPACTIVE - Mechanochemistry Towards Greener Pharmaceuticals. https://mechanochemistry.eu/our-project/

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413–447. https://doi.org/10.1039/c1cs15171a

Kabir, E., Noyon, M. K., & Hossain, M. A. (2023). Synthesis, biological and medicinal impacts of metallodrugs: A study. Results in Chemistry, 5, 100935. https://doi.org/10.1016/j.rechem.2023.100935

Lucaciu, R. L., Hangan, A. C., Sevastre, B., & Oprean, L. S. (2022). Metallo-Drugs in cancer therapy: Past, present and future. Molecules, 27(19), 6485. https://doi.org/10.3390/molecules27196485

Mjos, K. D., & Orvig, C. (2014). Metallodrugs in Medicinal Inorganic chemistry. Chemical Reviews, 114(8), 4540–4563. https://doi.org/10.1021/cr400460s

Ober, H. (2023, November 22). UCLA chemists use oxygen, copper ‘scissors’ to make cheaper drug treatments possible. UCLA. https://newsroom.ucla.edu/releases/chemists-oxygen-copper-less-expensive-drug-treatments

Quaresma, S., André, V., Fernandes, A., & Duarte, M. T. (2016). Mechanochemistry – A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimica Acta, 455, 309–318. https://doi.org/10.1016/j.ica.2016.09.033

Rodrigues-Junior, V. S., Villela, A. D., Abbadi, B. L., Sperotto, N. D., Pissinate, K., Picada, J. N., Da Silva, J. B., Bizarro, C. V., Machado, P., & Basso, L. A. (2019). Nonclinical evaluation of IQG-607, an anti-tuberculosis candidate with potential use in combination drug therapy. Regulatory Toxicology and Pharmacology, 111, 104553. https://doi.org/10.1016/j.yrtph.2019.104553

Santos, D. (2014). Activity of IQG-607, a new orally active compound in a murine model of Mycobacterium tuberculosis infection. BMC Proceedings, 8(S4). https://doi.org/10.1186/1753-6561-8-s4-o8

Trento, C. (2023, December 27). Advantages of Precious Metal Catalysts. samaterials.com. https://www.samaterials.com/advantages-of-precious-metal-catalysts.html

Wagner, P. (2019). Metallodrugs and their various impacts on disorders and diseases. Chemistry & Biochemistry Student Projects. https://pillars.taylor.edu/chemistry-student/23

Zimmermann, G. R., Lehár, J., & Keith, C. T. (2006). Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discovery Today, 12(1–2), 34–42. https://doi.org/10.1016/j.drudis.2006.11.008

Published

02-28-2025

How to Cite

Reddy, S. (2025). The Future of Metallodrugs: Cost, Environmental Impact, Research Investments, and Clinical Trials. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8573

Issue

Section

HS Research Articles