The Role of the MAPK Signaling Pathway in LTP Reduction Associated with Alzheimer’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8544Keywords:
MAPK, Alzheimer's Disease, LTP, long-term potentationAbstract
The MAPK signaling pathway plays a key role in contributing to a major symptom of Alzheimer’s Disease: memory loss. Memory power can be measured by LTP (long-term potentiation) levels, as LTP is the process that strengthens synapses, allowing them to store memories upon repeated stimulation. The primary mechanism behind the MAPK signaling pathway is a large phosphorylation cascade between several proteins, including Ras, Raf, MEK, ERK, NF-kB, and other cytoplasmic and nuclear proteins. Under normal circumstances, the MAPK pathway results in an increase in LTP by boosting glutamate receptor concentration on a postsynaptic neuron. However, the overstimulation of this pathway results in excitotoxicity, causing cytoskeletal collapse and neuronal death, a phenomenon that commonly occurs due to Alzheimer’s Disease. Treatments for Alzheimer’s Disease can target stages of the MAPK signal transduction pathway or change the expression of genes that cause excitotoxicity. Understanding the MAPK signaling pathway is crucial for the development of memory improving Alzheimer’s treatments, remedies that would greatly better the lives of Alzheimer’s patients.
Downloads
References or Bibliography
Bandaru, P., Kondo, Y., & Kuriyan, J. (2018). The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harbor Perspectives in Medicine, 9(2), a031534. https://doi.org/10.1101/cshperspect.a031534
Chatterjee, M., & Ghosh, A. (2023). Dysregulation of phospholipase C signaling pathway in breast and colorectal cancer: Association with progression and prognosis. Elsevier EBooks, 2, 109–123. https://doi.org/10.1016/b978-0-323-95696-3.00004-1
Chen, B.-C., & Lin, W.-W. (2001). PKC- and ERK-dependent activation of IκB kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. British Journal of Pharmacology, 134(5), 1055–1065. https://doi.org/10.1038/sj.bjp.0704334
Eblen, S. T. (2018). Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Advances in Cancer Research, 99–142. https://doi.org/10.1016/bs.acr.2018.02.004
El-Tahan, R. R., Ghoneim, A. M., & El-Mashad, N. (2016). TNF-α gene polymorphisms and expression. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3197-y
GRM5 glutamate metabotropic receptor 5 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Www.ncbi.nlm.nih.gov. Retrieved June 5, 2024, from https://www.ncbi.nlm.nih.gov/gene/2915#gene-expression
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020). ERK/MAPK signalling pathway and tumorigenesis (Review). Experimental and Therapeutic Medicine, 19(3). https://doi.org/10.3892/etm.2020.8454
Hazra, S., Ghosh, S., & Hazra, B. (2017). Phytochemicals With Antileishmanial Activity. Studies in Natural Products Chemistry, 52, 303–336. https://doi.org/10.1016/b978-0-444-63931-8.00008-4
Laboratories, K. (2021, August 11). KEGG PATHWAY: Alzheimer disease - Homo sapiens (human). Www.kegg.jp. https://www.kegg.jp/pathway/hsa05010
Mathes, E., O’Dea, E. L., Hoffmann, A., & Ghosh, G. (2008). NF-κB dictates the degradation pathway of IκBα. The EMBO Journal, 27(9), 1357–1367. https://doi.org/10.1038/emboj.2008.73
Muta, Y., Matsuda, M., & Imajo, M. (2019). Divergent Dynamics and Functions of ERK MAP Kinase Signaling in Development, Homeostasis and Cancer: Lessons from Fluorescent Bioimaging. Cancers, 11(4), 513. https://doi.org/10.3390/cancers11040513
Okada, N., Ishigami, Y., Suzuki, T., Kaneko, A., Yasui, K., Fukutomi, R., & Isemura, M. (2008). Importins and exportins in cellular differentiation. Journal of Cellular and Molecular Medicine, 12(5b), 1863–1871. https://doi.org/10.1111/j.1582-4934.2008.00437.x
Paul, S., Yang, L., Mattingly, H., Goyal, Y., Shvartsman, S. Y., & Veraksa, A. (2020). Activation-induced substrate engagement in ERK signaling. Molecular Biology of the Cell, 31(4), 235–243. https://doi.org/10.1091/mbc.E19-07-0355
Ren, S., Breuillaud, L., Yao, W., Yin, T., Norris, K. A., Zehntner, S. P., & D’Adamio, L. (2021). TNF-α–mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer’s disease pathology in young Trem2 rats. Journal of Biological Chemistry, 296, 100089. https://doi.org/10.1074/jbc.ra120.016395
Ren, S., Yao, W., Tambini, M. D., Yin, T., Norris, K. A., & D’Adamio, L. (2020). Microglia TREM2R47H Alzheimer-linked variant enhances excitatory transmission and reduces LTP via increased TNF-α levels. ELife, 9. https://doi.org/10.7554/elife.57513
Society For Neuroscience. (2012). Brain facts : a primer on the brain and nervous system. Society For Neuroscience. https://www.brainfacts.org/-/media/Brainfacts2/BrainFacts-Book/Brain-Facts-Book-2018-high-res.pdf
Stokoe, D., & McCormick, F. (1997). Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. The EMBO Journal, 16(9), 2384–2396. https://doi.org/10.1093/emboj/16.9.2384
Sun, E., Motolani, A., Campos, L., & Lu, T. (2022). The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. International Journal of Molecular Sciences, 23(16), 8972. https://doi.org/10.3390/ijms23168972
Published
How to Cite
Issue
Section
Copyright (c) 2025 Saharsh Satyasai Bangaru; Yanessa Santiago

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


