Can CRISPR-Cas be used to cure HIV/AIDS?
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8500Keywords:
HIV, CRISPR, CRISPR-Cas9, gene editing, gene expression, receptor, cure, lentiviralsAbstract
The human immunodeficiency virus (HIV) devastated the world in the 1980s in a global epidemic, killing millions over the years. Despite the epidemic initiating over 40 years ago, there is no cure apart from some rigorous treatments that reduce HIV spread across the human body. However, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPRs) as a modifiable gene-editing technology provides a permanent solution to a currently incurable disease. Editing the gene expressing the receptor CD4 and one of the co-receptors, CXCR4 or CCR5, prevents expression of these receptors, thus removing all possible options for HIV to bind and inject its genetic material in a CD4+ T cell. After injecting a specialized lentiviral vector compartment containing a Cas9 enzyme, single-guide RNA, and ribonucleoprotein, the paper details a specific way of using electroporation, a method utilizing electrical currents to open temporary pores in the cell membrane, on specific locations depending on the age of the patient. This allows for smoother transport of the gene editing lentiviral vector. These components will be transferred through the nuclear membrane as well with the nuclear localization signals facilitating its entrance into the nucleus, after which the sgRNA guides the Cas9 to the point of cleavage, after which the system self-degrades almost immediately to ensure there is no potential random insertion or deletion caused by long-term Cas9 presence.
Downloads
References or Bibliography
Allen, A. G., Chung, C.-H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940
Atkins, A. J., Allen, A. G., Dampier, W., Haddad, E. K., Nonnemacher, M. R., & Wigdahl, B. (2021). HIV-1 cure strategies: why CRISPR? Expert Opinion on Biological Therapy, 1–13. https://doi.org/10.1080/14712598.2021.1865302
Bauss, J., Morris, M., Shankar, R., Olivero, R., Buck, L. N., Stenger, C. L., Hinds, D., Mills, J., Eby, A., Zagorski, J. W., Smith, C., Cline, S., Hartog, N. L., Chen, B., Huss, J., Carcillo, J. A., Rajasekaran, S., Bupp, C. P., & Prokop, J. W. (2021). CCR5 and Biological Complexity: The Need for Data Integration and Educational Materials to Address Genetic/Biological Reductionism at the Interface of Ethical, Legal, and Social Implications. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.790041
Cao, Y., Hunter, Z. R., Liu, X.-J., Xu, L., Yang, G.-Y., Chen, J. C., Patterson, C., Tsakmaklis, N., Kanan, S., Rodig, S. J., Castillo, J., & Treon, S. P. (2015). The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. 29(1), 169–176. https://doi.org/10.1038/leu.2014.187
Challenges in Delivery of Therapeutic Genomics and Proteomics | ScienceDirect. (n.d.). Www.sciencedirect.com. https://www.sciencedirect.com/book/9780123849649/challenges-in-delivery-of-therapeutic-genomics-and-proteomics
De Vry, J., Martínez-Martínez, P., Losen, M., Temel, Y., Steckler, T., Steinbusch, H. W. M., De Baets, M. H., & Prickaerts, J. (2010). In vivo electroporation of the central nervous system: A non-viral approach for targeted gene delivery. Progress in Neurobiology, 92(3), 227–244. https://doi.org/10.1016/j.pneurobio.2010.10.001
Dong, W., & Kantor, B. (2021). Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 13(7), 1288. https://doi.org/10.3390/v13071288
Faivre, N., Verollet, C., & Dumas, F. (2024). The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology, 21(1). https://doi.org/10.1186/s12977-024-00634-1
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A., Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., de Montalembert, M., Rondelli, D., & Sharma, A. (2020). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. New England Journal of Medicine, 384(3). https://doi.org/10.1056/nejmoa2031054
HIV after starting ART in detail | Guides | HIV i-Base. (n.d.). I-Base.info. https://i-base.info/guides/art-in-pictures/iv-after-starting-art-in-detail
HIV.gov. (2022, August 3). The global HIV/AIDS epidemic. HIV.gov. https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics
How HIV smuggles its genetic material into the cell nucleus. (n.d.). ScienceDaily. https://www.sciencedaily.com/releases/2024/01/240125150059.htm
Huang, Z., Fang, J., Zhou, M., Gong, Z., & Xiang, T. (2022). CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Frontiers in Microbiology, 13, 1011399. https://doi.org/10.3389/fmicb.2022.1011399
Khalili, K., White, M. K., & Jacobson, J. M. (2017). Novel AIDS therapies based on gene editing. Cellular and Molecular Life Sciences, 74(13), 2439–2450. https://doi.org/10.1007/s00018-017-2479-z
Koay, W. L. A., Siems, L. V., & Persaud, D. (2018). The microbiome and HIV persistence. Current Opinion in HIV and AIDS, 13(1), 61–68. https://doi.org/10.1097/coh.0000000000000434
Kumar, B. V., Connors, T., & Farber, D. L. (2018). Human T cell development, localization, and function throughout life. Immunity, 48(2), 202–213. https://doi.org/10.1016/j.immuni.2018.01.007
Leonard, J. (2022, August 19). HIV antiretroviral drugs: Types and side effects. Www.medicalnewstoday.com. https://www.medicalnewstoday.com/articles/324013
Li, Q., Qian, C., & Zhou, F.-Q. (2018). Investigating Mammalian Axon Regeneration: In Vivo Electroporation of Adult Mouse Dorsal Root Ganglion. Journal of Visualized Experiments, 139. https://doi.org/10.3791/58171
Liu, W., Li, L., Jiang, J., Wu, M., & Lin, P. (2021). Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 4(3), 179–191. https://doi.org/10.1093/pcmedi/pbab014
Lu, J., Wu, T., Zhang, B., Liu, S., Song, W., Qiao, J., & Ruan, H. (2021). Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling, 19(1). https://doi.org/10.1186/s12964-021-00741-y
Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4+T Cells: Differentiation and Functions. Clinical and Developmental Immunology, 2012(925135), 1–12. https://doi.org/10.1155/2012/925135
Mayo Clinic. (2024, February 9). HIV/AIDS - Symptoms and causes. Mayo Clinic; Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hiv-aids/symptoms-causes/syc-20373524
Munis, A. M. (2020). Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses, 12(10), 1106. https://doi.org/10.3390/v12101106
National Library of Medicine. (2023, August 14). What are the organs of the immune system? Nih.gov; Institute for Quality and Efficiency in Health Care (IQWiG). https://www.ncbi.nlm.nih.gov/books/NBK279395/
Number of HIV-positive people in select countries Africa 2022. (n.d.). Statista. https://www.statista.com/statistics/1305217/number-people-with-hiv-african-countries/
Ortinski, P. I., O’Donovan, B., Dong, X., & Kantor, B. (2017). Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing. Molecular Therapy - Methods & Clinical Development, 5, 153–164. https://doi.org/10.1016/j.omtm.2017.04.002
Paoli, J. (2013). HIV Resistant Mutation | Viruses101 | Learn Science at Scitable. Nature.com. https://www.nature.com/scitable/blog/viruses101/hiv_resistant_mutation/
Potter H. (2003). Transfection by electroporation. Current protocols in molecular biology, Chapter 9, Unit–9.3. https://doi.org/10.1002/0471142727.mb0903s62
Rakoczy, K., Kisielewska, M., Sędzik, M., Jonderko, L., Celińska, J., Sauer, N., Szlasa, W., Saczko, J., Novickij, V., & Kulbacka, J. (2022). Electroporation in Clinical Applications—The Potential of Gene Electrotransfer and Electrochemotherapy. In Applied Sciences (Switzerland) (Vol. 12, Issue 21). MDPI. https://doi.org/10.3390/app122110821
Redman, M., King, A., Watson, C., & King, D. (2016). What Is CRISPR/Cas9? Archives of Disease in Childhood - Education & Practice Edition, 101(4), 213–215. https://doi.org/10.1136/archdischild-2016-310459
Schlimgen, R., Howard, J., Wooley, D., Thompson, M., Baden, L. R., Yang, O. O., Christiani, D. C., Mostoslavsky, G., Diamond, D. V., Duane, E. G., Byers, K., Winters, T., Gelfand, J. A., Fujimoto, G., Hudson, T. W., & Vyas, J. M. (2016). Risks Associated With Lentiviral Vector Exposures and Prevention Strategies. Journal of Occupational and Environmental Medicine, 58(12), 1159–1166. https://doi.org/10.1097/JOM.0000000000000879
Side Effects of HIV and AIDS Drugs. (n.d.). WebMD. https://www.webmd.com/hiv-aids/aids-hiv-medication-side-effects
Smith, L. M., Ladner, J. T., Hodara, V. L., Parodi, L. M., R. Alan Harris, Callery, J. E., Lai, Z., Zou, Y., Muthuswamy Raveedran, Rogers, J., & Giavedoni, L. D. (2021). Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA. Journal of Virology, 95(23). https://doi.org/10.1128/jvi.00882-21
Sokołowska, E., & Błachnio-Zabielska, A. U. (2019). A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. International journal of molecular sciences, 20(11), 2776. https://doi.org/10.3390/ijms20112776
Synthego. (2019). Synthego | Full Stack Genome Engineering. Synthego.com. https://www.synthego.com/guide/how-to-use-crispr/sgrna
The Immune Response | ScienceDirect. (n.d.). Www.sciencedirect.com. https://www.sciencedirect.com/book/9780120884513/the-immune-response
The Jackson Laboratory. (2012). What is CRISPR? The Jackson Laboratory. https://www.jax.org/personalized-medicine/precision-medicine-and-you/what-is-crispr
Thymus: The Function of the Gland & Why it is Important. (n.d.). Cleveland Clinic. https://my.clevelandclinic.org/health/body/23016-thymus#anatomy
Tsibris, A. M. N., & Hirsch, M. S. (2010). Antiretroviral Therapy in the Clinic. Journal of Virology, 84(11), 5458–5464. https://doi.org/10.1128/jvi.02524-09
U.S. Department of Health & Human Services. (2023, January 13). What are HIV and AIDS? HIV.gov. https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/what-are-hiv-and-aids
Varanasi, A., & Wilson, E. (2023). The Applications of the CRISPR/Cas9 Gene-Editing System in Treating Human Diseases. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.3166
Vidya Vijayan, K. K., Karthigeyan, K. P., Tripathi, S. P., & Hanna, L. E. (2017). Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Frontiers in Immunology, 8(580). https://doi.org/10.3389/fimmu.2017.00580
West, M. (2021, August 20). Thymus gland: Function, location, hormones, and more. Www.medicalnewstoday.com. https://www.medicalnewstoday.com/articles/thymus
What Happens if You Miss a Dose of HIV Medication? (2024, February 29). Www.thebody.com. https://www.thebody.com/article/hiv-medication-missed-dose
Xu, Y., & Li, Z. (2020). CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 18(18), 2401–2415. https://doi.org/10.1016/j.csbj.2020.08.031
Yip, B. H. (2020). Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 10(6), 839. https://doi.org/10.3390/biom10060839
Published
How to Cite
Issue
Section
Copyright (c) 2025 Taksh Bhatia; Dr. Kathryn Wilwohl, Virgel Torremocha, Jothsna Kethar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


