The Warburg Effect and its Role in Tumorigenesis
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8478Keywords:
cancer, cellular metabolism, tumorigenesis, cancer metabolism, glycometabolismAbstract
The second leading cause of death in the United States, cancer is the rapid proliferation of abnormal cells that grow and spread beyond their usual boundaries in the body. A significant part of cancer research has focused on elucidating the nature of tumourigenic cells to determine viable treatment therapies and prevention methods for cancer development and metastasis. One of the major hallmarks of cancer is tumor cell glycometabolism, where cancer cells rewire their metabolism to promote their growth, survival, maintenance, and proliferation. This aberrant metabolism is characterized by increased glycolysis even in the presence of oxygen, a phenomenon known as the ‘Warburg Effect’. Several prominent characteristics of the Warburg Effect have been observed over the last century, including increased glucose uptake, lactate accumulation, and induced acidosis in the tumor microenvironment. This review examines the Warburg Effect, its role in tumorigenesis, and current anticancer therapeutics that have arisen from related studies.
Downloads
References or Bibliography
Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2016). Cancer metabolism: A therapeutic perspective. Nature Reviews Clinical Oncology, 14(1), 11–31. doi:10.1038/nrclinonc.2016.60
Lu, J., Tan, M., & Cai, Q. (2015). The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters, 356(2), 156–164. doi:10.1016/j.canlet.2014.04.001
Ostroukhova, M., Goplen, N., Karim, M. Z., Michalec, L., Guo, L., Liang, Q., & Alam, R. (2012). The role of low-level lactate production in airway inflammation in asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302(3). doi:10.1152/ajplung.00221.2011
DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1), 11–20. doi:10.1016/j.cmet.2007.10.002
Potter, M., Newport, E., & Morten, K. J. (2016). The warburg effect: 80 years on. Biochemical Society Transactions, 44(5), 1499–1505. doi:10.1042/bst20160094
Ferreira L. M. (2010). Cancer metabolism: the Warburg effect today. Experimental and molecular pathology, 89(3), 372–380. https://doi.org/10.1016/j.yexmp.2010.08.006
Pauwels, E. K., Sturm, E. J., Bombardieri, E., Cleton, F. J., & Stokkel, M. P. (2000). Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. Journal of cancer research and clinical oncology, 126(10), 549–559. https://doi.org/10.1007/pl00008465
Gonzalez-Menendez, P., Hevia, D., Alonso-Arias, R., Alvarez-Artime, A., Rodriguez-Garcia, A., Kinet, S., … Sainz, R. M. (2018). GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biology, 17, 112–127. doi:10.1016/j.redox.2018.03.017
Cazzaniga, M., & Bonanni, B. (2015). Relationship Between Metabolic Reprogramming and Mitochondrial Activity in Cancer Cells. Understanding The Anticancer Effect of Metformin and Its Clinical Implications. Anticancer research, 35(11), 5789–5796.
Lebelo, M. T., Joubert, A. M., & Visagie, M. H. (2019). Warburg effect and its role in tumourigenesis. Archives of Pharmacal Research, 42(10), 833–847. doi:10.1007/s12272-019-01185-2
Macheda, M. L., Rogers, S., & Best, J. D. (2004). Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of Cellular Physiology, 202(3), 654–662. doi:10.1002/jcp.20166
Gonzalez-Menendez, P., Hevia, D., Alonso-Arias, R., Alvarez-Artime, A., Rodriguez-Garcia, A., Kinet, S., … Sainz, R. M. (2018a). GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biology, 17, 112–127. doi:10.1016/j.redox.2018.03.017
Aquino-Gálvez, A., González-Ávila, G., Delgado-Tello, J., Castillejos-López, M., Mendoza-Milla, C., Zúñiga, J., Checa, M., Maldonado-Martínez, H. A., Trinidad-López, A., Cisneros, J., Torres-Espíndola, L. M., Hernández-Jiménez, C., Sommer, B., Cabello-Gutiérrez, C., & Gutiérrez-González, L. H. (2016). Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncology reports, 35(1), 577–583. https://doi.org/10.3892/or.2015.4399
Barteczek, P., Li, L., Ernst, A. S., Böhler, L. I., Marti, H. H., & Kunze, R. (2017). Neuronal HIF-1α and HIF-2α deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 37(1), 291–306. https://doi.org/10.1177/0271678X15624933
Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L, Jian Z. The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget. 2017 Jun 27;8(26):43356-43367. doi: 10.18632/oncotarget.17445. PMID: 28498810; PMCID: PMC5522151.
Wang, Y., Shu, Y., Gu, C., & Fan, Y. (2019). The novel sugar transporter SLC50A1 as a potential serum-based diagnostic and prognostic biomarker for breast cancer. Cancer management and research, 11, 865–876. https://doi.org/10.2147/CMAR.S190591
Bellance, N., Benard, G., Furt, F., Begueret, H., Smolková, K., Passerieux, E., Delage, J. P., Baste, J. M., Moreau, P., & Rossignol, R. (2009). Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. The international journal of biochemistry & cell biology, 41(12), 2566–2577. https://doi.org/10.1016/j.biocel.2009.08.012
Hsieh, T. C., & Wu, J. M. (2010). Resveratrol: Biological and pharmaceutical properties as anticancer molecule. BioFactors (Oxford, England), 36(5), 360–369. https://doi.org/10.1002/biof.105
Carter, L. G., D'Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-related cancer, 21(3), R209–R225. https://doi.org/10.1530/ERC-13-0171
Zambrano, A., Molt, M., Uribe, E., & Salas, M. (2019). Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. International Journal of Molecular Sciences, 20(13), 3374. doi:10.3390/ijms20133374
Chen, S., Zhao, Z., Ke, L., Li, Z., Li, W., Zhang, Z., … Zhu, W. (2018). Resveratrol improves glucose uptake in insulin-resistant adipocytes via SIRT1. The Journal of Nutritional Biochemistry, 55, 209–218. doi:10.1016/j.jnutbio.2018.02.007
van Ginkel, P. R., Sareen, D., Subramanian, L., Walker, Q., Darjatmoko, S. R., Lindstrom, M. J., Kulkarni, A., Albert, D. M., & Polans, A. S. (2007). Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clinical cancer research : an official journal of the American Association for Cancer Research, 13(17), 5162–5169. https://doi.org/10.1158/1078-0432.CCR-07-0347
Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The Role of Resveratrol in Cancer Therapy. International journal of molecular sciences, 18(12), 2589. https://doi.org/10.3390/ijms18122589
Chen, Z., Vaeth, M., Eckstein, M., Delgobo, M., Ramos, G., Frantz, S., Hofmann, U., & Gladow, N. (2023). Characterization of the effect of the GLUT-1 inhibitor BAY-876 on T cells and macrophages. European journal of pharmacology, 945, 175552. https://doi.org/10.1016/j.ejphar.2023.175552
Chen, X., Zhao, Y., He, C., Gao, G., Li, J., Qiu, L., Wang, X., Gao, Y., Qi, Y., Sun, K., & Du, J. (2022). Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. International journal of biological macromolecules, 216, 768–778. https://doi.org/10.1016/j.ijbiomac.2022.07.123
Liu, Y., Zhao, Y., Song, H., Li, Y., Liu, Z., Ye, Z., Zhao, J., Wu, Y., Tang, J., & Yao, M. (2024). Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer letters, 597, 217076. https://doi.org/10.1016/j.canlet.2024.217076
Tilekar, K., Upadhyay, N., Iancu, C. V., Pokrovsky, V., Choe, J. Y., & Ramaa, C. S. (2020). Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochimica et biophysica acta. Reviews on cancer, 1874(2), 188457. https://doi.org/10.1016/j.bbcan.2020.188457
Martini, M., De Santis, M. C., Braccini, L., Gulluni, F., & Hirsch, E. (2014). PI3K/AKT signaling pathway and cancer: an updated review. Annals of medicine, 46(6), 372–383. https://doi.org/10.3109/07853890.2014.912836
Chen, Y. L., Law, P. Y., & Loh, H. H. (2005). Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Current medicinal chemistry. Anti-cancer agents, 5(6), 575–589. https://doi.org/10.2174/156801105774574649
Alzahrani A. S. (2019). PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Seminars in cancer biology, 59, 125–132. https://doi.org/10.1016/j.semcancer.2019.07.009
Stern, R., Shuster, S., Neudecker, B. A., & Formby, B. (2002). Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Experimental cell research, 276(1), 24–31. https://doi.org/10.1006/excr.2002.5508
Slomiany, M. G., Grass, G. D., Robertson, A. D., Yang, X. Y., Maria, B. L., Beeson, C., & Toole, B. P. (2009). Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer research, 69(4), 1293–1301. https://doi.org/10.1158/0008-5472.CAN-08-2491
Brown, T. P., & Ganapathy, V. (2020). Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacology & therapeutics, 206, 107451. https://doi.org/10.1016/j.pharmthera.2019.107451
Romero-Garcia, S., Moreno-Altamirano, M. M., Prado-Garcia, H., & Sánchez-García, F. J. (2016). Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in immunology, 7, 52. https://doi.org/10.3389/fimmu.2016.00052
Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., & Rivoltini, L. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer research, 72(11), 2746–2756. https://doi.org/10.1158/0008-5472.CAN-11-1272
Xia, H., Wang, W., Crespo, J., Kryczek, I., Li, W., Wei, S., Bian, Z., Maj, T., He, M., Liu, R. J., He, Y., Rattan, R., Munkarah, A., Guan, J. L., & Zou, W. (2017). Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity. Science immunology, 2(17), eaan4631. https://doi.org/10.1126/sciimmunol.aan4631
Husain, Z., Huang, Y., Seth, P., & Sukhatme, V. P. (2013). Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. Journal of immunology (Baltimore, Md. : 1950), 191(3), 1486–1495. https://doi.org/10.4049/jimmunol.1202702
professional, C. C. medical. (2024). What are natural killer cells (NK cells)? Retrieved from https://my.clevelandclinic.org/health/body/24898-natural-killer-cells
Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. The Journal of biological chemistry, 281(14), 9030–9037. https://doi.org/10.1074/jbc.M511397200
Javaeed A, Ghauri SK. MCT4 has a potential to be used as a prognostic biomarker - a systematic review and meta-analysis. Oncol Rev. 2019 Jul 22;13(2):403. doi: 10.4081/oncol.2019.403. PMID: 31410246; PMCID: PMC6661531.
Baenke, F., Dubuis, S., Brault, C., Weigelt, B., Dankworth, B., Griffiths, B., Jiang, M., Mackay, A., Saunders, B., Spencer-Dene, B., Ros, S., Stamp, G., Reis-Filho, J. S., Howell, M., Zamboni, N., & Schulze, A. (2015). Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. The Journal of pathology, 237(2), 152–165. https://doi.org/10.1002/path.4562
Choi, S. Y., Xue, H., Wu, R., Fazli, L., Lin, D., Collins, C. C., Gleave, M. E., Gout, P. W., & Wang, Y. (2016). The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(11), 2721–2733. https://doi.org/10.1158/1078-0432.CCR-15-1624
Todenhöfer, T., Seiler, R., Stewart, C., Moskalev, I., Gao, J., Ladhar, S., Kamjabi, A., Al Nakouzi, N., Hayashi, T., Choi, S., Wang, Y., Frees, S., Daugaard, M., Oo, H. Z., Fisel, P., Schwab, M., Schaeffeler, E., Douglas, J., Hennenlotter, J., Bedke, J., … Black, P. C. (2018). Selective Inhibition of the Lactate Transporter MCT4 Reduces Growth of Invasive Bladder Cancer. Molecular cancer therapeutics, 17(12), 2746–2755. https://doi.org/10.1158/1535-7163.MCT-18-0107
Chen, X., Qian, Y., & Wu, S. (2015). The Warburg effect: evolving interpretations of an established concept. Free radical biology & medicine, 79, 253–263. https://doi.org/10.1016/j.freeradbiomed.2014.08.027
Benjamin, D., Robay, D., Hindupur, S. K., Pohlmann, J., Colombi, M., El-Shemerly, M. Y., Maira, S. M., Moroni, C., Lane, H. A., & Hall, M. N. (2018). Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells. Cell reports, 25(11), 3047–3058.e4. https://doi.org/10.1016/j.celrep.2018.11.043
Benjamin D, Colombi M, Hindupur SK, Betz C, Lane HA, El-Shemerly MY, Lu M, Quagliata L, Terracciano L, Moes S, Sharpe T, Wodnar-Filipowicz A, Moroni C, Hall MN. Syrosingopine sensitizes cancer cells to killing by metformin. Sci Adv. 2016 Dec 23;2(12):e1601756. doi: 10.1126/sciadv.1601756. PMID: 28028542; PMCID: PMC5182053.
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W., & Kreutz, M. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109(9), 3812–3819. https://doi.org/10.1182/blood-2006-07-035972
Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer research, 73(5), 1524–1535. https://doi.org/10.1158/0008-5472.CAN-12-2796
Binker, M. G., Binker-Cosen, M. J., Binker-Cosen, A. A., & Cosen-Binker, L. I. (2014). Microenvironmental factors and extracellular matrix degradation in pancreatic cancer. JOP : Journal of the pancreas, 15(4), 280–285. https://doi.org/10.6092/1590-8577/2638
Halcrow, P., Datta, G., Ohm, J. E., Soliman, M. L., Chen, X., & Geiger, J. D. (2019). Role of endolysosomes and pH in the pathogenesis and treatment of glioblastoma. Cancer reports (Hoboken, N.J.), 2(6), e1177. https://doi.org/10.1002/cnr2.1177
El-Kenawi, A., Gatenbee, C., Robertson-Tessi, M., Bravo, R., Dhillon, J., Balagurunathan, Y., Berglund, A., Vishvakarma, N., Ibrahim-Hashim, A., Choi, J., Luddy, K., Gatenby, R., Pilon-Thomas, S., Anderson, A., Ruffell, B., & Gillies, R. (2019). Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. British journal of cancer, 121(7), 556–566. https://doi.org/10.1038/s41416-019-0542-2
Peppicelli, S., Andreucci, E., Ruzzolini, J., Laurenzana, A., Margheri, F., Fibbi, G., Del Rosso, M., Bianchini, F., & Calorini, L. (2017). The acidic microenvironment as a possible niche of dormant tumor cells. Cellular and molecular life sciences : CMLS, 74(15), 2761–2771. https://doi.org/10.1007/s00018-017-2496-y
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
Payne, C. M., Bernstein, C., Dvorak, K., & Bernstein, H. (2008). Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clinical and experimental gastroenterology, 1, 19–47. https://doi.org/10.2147/ceg.s4343
Morita, T., Nagaki, T., Fukuda, I., & Okumura, K. (1992). Clastogenicity of low pH to various cultured mammalian cells. Mutation research, 268(2), 297–305. https://doi.org/10.1016/0027-5107(92)90235-t
Xiao, H., Li, T. K., Yang, J. M., & Liu, L. F. (2003). Acidic pH induces topoisomerase II-mediated DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5205–5210. https://doi.org/10.1073/pnas.0935978100
Jayanth, V. R., Bayne, M. T., & Varnes, M. E. (1994). Effects of extracellular and intracellular pH on repair of potentially lethal damage, chromosome aberrations and DNA double-strand breaks in irradiated plateau-phase A549 cells. Radiation research, 139(2), 152–162.
Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., & Rivoltini, L. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer research, 72(11), 2746–2756. https://doi.org/10.1158/0008-5472.CAN-11-1272
Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mulé, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2016). Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer research, 76(6), 1381–1390. https://doi.org/10.1158/0008-5472.CAN-15-1743
Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting Tumor Microenvironment for Cancer Therapy. International journal of molecular sciences, 20(4), 840. https://doi.org/10.3390/ijms20040840
Ma, S., Song, W., Xu, Y., Si, X., Zhang, D., Lv, S., Yang, C., Ma, L., Tang, Z., & Chen, X. (2020). Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 232, 119676. https://doi.org/10.1016/j.biomaterials.2019.119676
Bailey, K. M., Wojtkowiak, J. W., Cornnell, H. H., Ribeiro, M. C., Balagurunathan, Y., Hashim, A. I., & Gillies, R. J. (2014). Mechanisms of buffer therapy resistance. Neoplasia (New York, N.Y.), 16(4), 354–64.e643. https://doi.org/10.1016/j.neo.2014.04.005
Ibrahim-Hashim, A., & Estrella, V. (2019). Acidosis and cancer: from mechanism to neutralization. Cancer metastasis reviews, 38(1-2), 149–155. https://doi.org/10.1007/s10555-019-09787-4
Published
How to Cite
Issue
Section
Copyright (c) 2025 Angela Peddapalli

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


