Neurological Impact of Diabetes, and Stem Cell as a Course of Action
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8432Keywords:
Stem cell, Diabetes and neurodegeneration, Neuron damage, Hyperglycemia, Hypoglycemia, TMS, Treatments for diabetesAbstract
A large, and ever growing population has diabetes. Research needs to be conducted to help this population maintain a healthy life. The study focused in particular with regards to neurodegeneration. Multiple connections between diabetes and neurodegeneration were found such as in neuropathy, which is nerve damage due to oxidative and other stress due to high blood sugars, which could eventually escalate to motor dysfunction. Other conditions were also looked at, such as the impact of hypoglycemia low blood sugar conditions on neurodegeneration. FJB+ cells, biomarkers for neurodegeneration, were seen in severe hypoglycemic conditions potentially due to excitotoxicity damaging nerve cells. Multiple solutions were then looked into in an attempt to find a cure for diabetes and neuropathy. Stem cells were evaluated as a potential cure for diabetes. A recent use of stem cells in diabetes was evaluated, and there is promise in this technique for curing diabetes but further research is required. A method called TMS was explored as a cure for neuropathy, and current research shows promising results.
Downloads
References or Bibliography
ADA. (2023). Statistics about diabetes. Diabetes.org; American Diabetes Association. https://diabetes.org/about-diabetes/statistics/about-diabetes
Ahmed, A. S. I., Sheng, M. H., Wasnik, S., Baylink, D. J., & Lau, K.-H. W. (2017). Effect of aging on stem cells. World Journal of Experimental Medicine, 7(1), 1–10. https://doi.org/10.5493/wjem.v7.i1.1
Akhtar, S., Hassan, F., Saqlain, S. R., Ali, A., & Hussain, S. (2023). The prevalence of peripheral neuropathy among the patients with diabetes in Pakistan: a systematic review and meta-analysis. Scientific Reports, 13(1), 11744. https://doi.org/10.1038/s41598-023-39037-1
Al-Sayyar, A., Hammad, M., Williams, M. R., Al-Onaizi, M., Abubaker, J., & Alzaid, F. (2023). Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites, 13(3), 384–384. https://doi.org/10.3390/metabo13030384
Amine, H., Benomar, Y., & Taouis, M. (2021). Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-85018-7
Armada-Moreira, A., Gomes, J. I., Pina, C. C., Savchak, O. K., Gonçalves-Ribeiro, J., Rei, N., Pinto, S., Morais, T. P., Martins, R. S., Ribeiro, F. F., Sebastião, A. M., Crunelli, V., & Vaz, S. H. (2020). Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.00090
Bakkum, B. W., et al. (n.d.). Blastocyst. ScienceDirect. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/blastocyst#:~:text=A%20blastocyst%20is%20an%20early,tissues%20in%20the%20adult%20organism.
Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science, 11(6), 1164–1178. https://doi.org/10.5114/aoms.2015.56342
Bauer, B. A. (2023, March 24). What is BPA, and what are the concerns about BPA? Mayo Clinic. https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/expert-answers/bpa/faq-20058331
Bhonde, R. R., Sheshadri, P., Sharma, S., & Kumar, A. (2014). Making surrogate β-cells from mesenchymal stromal cells: Perspectives and future endeavors. The International Journal of Biochemistry & Cell Biology, 46, 90–102. https://doi.org/10.1016/j.biocel.2013.11.006
Bree, A. J., Puente, E. C., Daphna-Iken, D., & Fisher, S. J. (2009). Diabetes increases brain damage caused by severe hypoglycemia. American Journal of Physiology. Endocrinology and Metabolism, 297(1), E194-201. https://doi.org/10.1152/ajpendo.91041.2008
Calderón Guzmán, D., Juárez Olguín, H., Veloz Corona, Q., Ortiz Herrera, M., Osnaya Brizuela, N., & Barragán Mejía, G. (2020). Consumption of Cooked Common Beans or Saponins Could Reduce the Risk of Diabetic Complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 13, 3481–3486. https://doi.org/10.2147/dmso.s270564
Castellano, E., & Downward, J. (2011). RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes & Cancer, 2(3), 261–274. https://doi.org/10.1177/1947601911408079
CDC. (2020). National Diabetes Statistics Report 2020. Estimates of diabetes and its burden in the United States. https://diabetesresearch.org/wp-content/uploads/2022/05/national-diabetes-statistics-report-2020.pdf
CDC. (2024, May 15). About Type 1 Diabetes. CDC| Diabetes. https://www.cdc.gov/diabetes/about/about-type-1-diabetes.html#:~:text=Type%201%20diabetes%20is%20thought
Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: structure, Biology and structure-based Therapeutic Development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
Cheng, L. S., Hotta, R., Graham, H. K., Belkind-Gerson, J., Nagy, N., & Goldstein, A. M. (2017). Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatric Research, 81(5), 838–846. https://doi.org/10.1038/pr.2017.4
Cleveland Clinic. (2021, October 12). Cortisol: What It Is, Function, Symptoms & Levels. Cleveland Clinic. https://my.clevelandclinic.org/health/articles/22187-cortisol
Cleveland Clinic. (2023a, March 1). What are Cytokines? Types and Function. Cleveland Clinic. https://my.clevelandclinic.org/health/body/24585-cytokines
Cleveland Clinic. (2023b, May 27). Functional MRI – Seeing Brain Activity as it Happens. Cleveland Clinic. https://my.clevelandclinic.org/health/diagnostics/25034-functional-mri-fmri
Cleveland Clinic. (2024, May 15). What Is Stress? Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/11874-stress
Cooper, E. C., & Jan, L. Y. (1999). Ion channel genes and human neurological disease: Recent progress, prospects, and challenges. Proceedings of the National Academy of Sciences, 96(9), 4759–4766. https://doi.org/10.1073/pnas.96.9.4759
Creative Proteomics. (n.d.). Demystifying Free Fatty Acids: Properties, Sources, and Significance. Creative Proteomics. https://www.creative-proteomics.com/resource/free-fatty-acids-properties-sources-significance.htm
Cryer, P. E. (2007). Hypoglycemia, functional brain failure, and brain death. Journal of Clinical Investigation, 117(4), 868–870. https://doi.org/10.1172/jci31669
Dahiya, R., Farooq, S. A., Mannan, A., Thakur, G., Singh, T. G., Najda, A., Grażyna, Z., Albadrani, G., Sayed, A., & Abdel Daim, Mohamed. (2022). Animal models of diabetic microvascular complications: Relevance to clinical features. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 145, 112305. https://doi.org/10.1016/j.biopha.2021.112305
De Angelis, L. C., Brigati, G., Polleri, G., Malova, M., Parodi, A., Minghetti, D., Rossi, A., Massirio, P., Traggiai, C., Maghnie, M., & Ramenghi, L. A. (2021). Neonatal Hypoglycemia and Brain Vulnerability. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.634305
Diabetes - Diagnosis and treatment - Mayo Clinic. (n.d.). Www.mayoclinic.org. https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451#:~:text=People%20with%20type%201%20diabetes%20must%20use%20insulin%20to%20manage
Discovery and Innovation at University of Utah Health. (2017, December 5). Neural and Cardiac Responses to Hypoglycemia – Discovery and Innovation at University of Utah Health. Utah.edu. https://discovery.med.utah.edu/2017/neural-and-cardiac-responses-to-hypoglycemia/#:~:text=Over%2Dtreatment%20with%20insulin%20leads
E. Ambrosio, C., D. Zomer, H., S. Vidane, A., & N. Gonçalves, N. (2015). Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells and Cloning: Advances and Applications, 8, 125–134. https://doi.org/10.2147/sccaa.s88036
Elflein, J. (2024, May 2). Diabetics number top countries 2019 | Statista. Statista; Statista. https://www.statista.com/statistics/281082/countries-with-highest-number-of-diabetics/
Elkon, K., & Casali, P. (2008). Nature and functions of autoantibodies. Nature Clinical Practice Rheumatology, 4(9), 491–498. https://doi.org/10.1038/ncprheum0895
Elzouki, A. Y., Harfi, H. A., Nazer, H. M., Stapleton, F. B., Oh, W., & Whitley, R. J. (2012). The Pancreas. Textbook of Clinical Pediatrics, 1925–1936. https://doi.org/10.1007/978-3-642-02202-9_198
EPA. (2017, August). Phthalates. Biomonitoring| Phthalates. https://www.epa.gov/sites/default/files/2017-08/documents/phthalates_updates_live_file_508_0.pdf
Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature Reviews Disease Primers, 5(1). https://doi.org/10.1038/s41572-019-0092-1
Félix-Martínez, G. J., Azpiroz-Leehan, J., Ávila-Pozos, R., & Godínez Fernández, J. R. (2014). Effects of Impaired ATP Production and Glucose Sensitivity on Human β-Cell Function: A Simulation Study. Revista Mexicana de Ingeniería Biomédica, 35(2), 157–170. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-95322014000200005#:~:text=As%20glucose%20increases%20to%20higher
Ferretti, G. R. (n.d.). Targeted Therapy. ScienceDirect. https://www.sciencedirect.com/topics/medicine-and-dentistry/targeted-therapy
Flamant, S., Loinard, C., & Tamarat, R. (2023). MSC beneficial effects and limitations, and MSC-derived extracellular vesicles as a new cell-free therapy for tissue regeneration in irradiated condition. Environmental Advances, 13, 100408. https://doi.org/10.1016/j.envadv.2023.100408
Gajavelli, S., Bregy, A., Spurlock, M., Diaz, D., Burks, S., Bomberger, C., Bidot, C., Yokobori, S., Diaz, J., Sanchez-Chavez, J., & Bullock, R. (2012). Immunohistochemical correlation of novel biomarkers with neurodegeneration in rat models of brain injury. https://doi.org/10.13140/2.1.3026.2725
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martin, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 1–34. https://doi.org/10.3390/ijms21176275
Gimeno, R. E., et al. (n.d.). Resistin| Science Direct Topics. ScienceDirect. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/resistin
Gleichmann, N. (2024, January 24). What are Progenitor Cells? Exploring Neural, Myeloid and Hematopoietic Progenitor Cells. Technology Networks Cell Science; Technology Networks. https://www.technologynetworks.com/cell-science/articles/what-are-progenitor-cells-exploring-neural-myeloid-and-hematopoietic-progenitor-cells-329519#:~:text=When%20compared%20to%20stem%20cells
Graziani, N. S., Carreras, H., & Wannaz, E. (2019). Atmospheric levels of BPA associated with particulate matter in an urban environment. Heliyon, 5(4), e01419. https://doi.org/10.1016/j.heliyon.2019.e01419
Grider, M. H., Jessu, R., & Kabir, R. (2023). Physiology, Action Potential. In Nih.gov. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK538143/
Gupta, V. K., You, Y., Gupta, V. B., Klistorner, A., & Graham, S. L. (2013). TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders. International Journal of Molecular Sciences, 14(5), 10122–10142. https://doi.org/10.3390/ijms140510122
Gusel’nikova, V. V., & Korzhevskiy, D. E. (2015). NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. ActaNaturae, 7(2), 42–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463411/
Hansen, K. B., Wollmuth, L. P., Bowie, D., Furukawa, H., Menniti, F. S., Sobolevsky, A. I., Swanson, G. T., Swanger, S. A., Greger, I. H., Nakagawa, T., McBain, C. J., Jayaraman, V., Low, C.-M., Dell’Acqua, M. L., Diamond, J. S., Camp, C. R., Perszyk, R. E., Yuan, H., & Traynelis, S. F. (2021). Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 73(4), 298–487. https://doi.org/10.1124/pharmrev.120.000131
Hao, J.-W., Wang, J., Guo, H., Zhao, Y.-Y., Sun, H.-H., Li, Y.-F., Lai, X.-Y., Zhao, N., Wang, X., Xie, C., Hong, L., Huang, X., Wang, H.-R., Li, C.-B., Liang, B., Chen, S., & Zhao, T.-J. (2020). CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18565-8
Hernández-Cáceres, M. P., Toledo-Valenzuela, L., Díaz-Castro, F., Ávalos, Y., Burgos, P., Narro, C., Peña-Oyarzun, D., Espinoza-Caicedo, J., Cifuentes-Araneda, F., Navarro-Aguad, F., Riquelme, C., Troncoso, R., Criollo, A., & Morselli, E. (2019). Palmitic acid reduces the autophagic flux and insulin sensitivity through the activation of the free fatty acid receptor 1 (FFAR1) in the hypothalamic neuronal cell line N43/5. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00176
Hicks, C. W., & Selvin, E. (2019). Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Current Diabetes Reports, 19(10), 1–8. https://doi.org/10.1007/s11892-019-1212-8
Hobbs, H. (2023, May 24). Type 3 Diabetes and Alzheimer’s Disease. Healthline. https://www.healthline.com/health/type-3-diabetes#prevention
Huang, X., Liu, G., Guo, J., & Su, Z. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 14(11), 1483–1496. https://doi.org/10.7150/ijbs.27173
InformedHealth.org. (2023). Hyperglycemia and hypoglycemia in type 2 diabetes. In www.ncbi.nlm.nih.gov. Institute for Quality and Efficiency in Health Care (IQWiG). https://www.ncbi.nlm.nih.gov/books/NBK279510/#:~:text=If%20someone%20has%20readings%20over
Insel, R. A., Dunne, J. L., Atkinson, M. A., Chiang, J. L., Dabelea, D., Gottlieb, P. A., Greenbaum, C. J., Herold, K. C., Krischer, J. P., Lernmark, Å., Ratner, R. E., Rewers, M. J., Schatz, D. A., Skyler, J. S., Sosenko, J. M., & Ziegler, Anette-G. (2015). Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care, 38(10), 1964–1974. https://doi.org/10.2337/dc15-1419
Jagust, W. (2016). Is amyloid-β harmful to the brain? Insights from human imaging studies. Brain, 139(1), 23–30. https://doi.org/10.1093/brain/awv326
Jakubowski, H., & Flatt, P. (2018). 13.3: Gluconeogenesis. In Biology LibreTexts. https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(Jakubowski_and_Flatt)/02%3A_Unit_II-_Bioenergetics_and_Metabolism/13%3A_Glycolysis_Gluconeogenesis_and_the_Pentose_Phosphate_Pathway/13.03%3A_Gluconeogenesis
Jewett, B. E., & Thapa, B. (2022, December 11). Physiology, NMDA Receptor. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK519495/#:~:text=The%20N%2Dmethyl%2DD%2D
Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G., & Majumdar, A. S. (2007). Generation of Insulin-Producing Islet-Like Clusters from Human Embryonic Stem Cells. Stem Cells, 25(8), 1940–1953. https://doi.org/10.1634/stemcells.2006-0761
Kaya, Z. B., Santiago-Padilla, V., Lim, M., Boschen, S. L., Atilla, P., & McLean, P. J. (2024). Optimizing SH-SY5Y cell culture: exploring the beneficial effects of an alternative media supplement on cell proliferation and viability. Scientific Reports, 14(1), 4775. https://doi.org/10.1038/s41598-024-55516-5
Khan, S., Yan-Do, R., Duong, E., Wu, X., Bautista, A., Cheley, S., MacDonald, P. E., & Braun, M. (2014). Autocrine activation of P2Y1 receptors couples Ca2+ influx to Ca2+ release in human pancreatic beta cells. Diabetologia, 57(12), 2535–2545. https://doi.org/10.1007/s00125-014-3368-8
Kjems, L. L., Holst, J. J., Volund, A., & Madsbad, S. (2003). The Influence of GLP-1 on Glucose-Stimulated Insulin Secretion: Effects on -Cell Sensitivity in Type 2 and Nondiabetic Subjects. Diabetes, 52(2), 380–386. https://doi.org/10.2337/diabetes.52.2.380
Laird, M. H. W., Rhee, S. H., Perkins, D. J., Medvedev, A. E., Piao, W., Fenton, M. J., & Vogel, S. N. (2009). TLR4/MyD88/PI3K interactions regulate TLR4 signaling. Journal of Leukocyte Biology, 85(6), 966–977. https://doi.org/10.1189/jlb.1208763
Laron, Z. (2001). Insulin-like growth factor 1 (IGF-1): a growth hormone. Molecular Pathology, 54(5), 311–316. https://doi.org/10.1136/mp.54.5.311
Lee, F. S., et al. (n.d.). Schwann Cell - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/neuroscience/schwann-cell#:~:text=Schwann%20cells%20are%20the%20glial
Li, J., Yan, H., Xiang, R., Yang, W., Ye, J., Yin, R., Yang, J., & Chi, Y. (2022). ATP Secretion and Metabolism in Regulating Pancreatic Beta Cell Functions and Hepatic Glycolipid Metabolism. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.918042
Li, M., Wang, Y., Banerjee, R., Marinelli, F., Silberberg, S., Faraldo-Gómez, J. D., Hattori, M., & Swartz, K. J. (2019). Molecular mechanisms of human P2X3 receptor channel activation and modulation by divalent cation bound ATP. ELife, 8, e47060. https://doi.org/10.7554/eLife.47060
Liu, C., et al. (n.d.). Amyloid Protein - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/neuroscience/amyloid-protein
Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., & McKay, R. (2001). Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets. Science, 292(5520), 1389–1394. https://doi.org/10.1126/science.1058866
MacDonald, A. (2023, December 18). Cell Potency: Totipotent vs Pluripotent vs Multipotent Stem Cells. Technology Networks Cell Science; Technology Networks. https://www.technologynetworks.com/cell-science/articles/cell-potency-totipotent-vs-pluripotent-vs-multipotent-stem-cells-303218
MacLeod, R., Hillert, E.-K., Cameron, R. T., & Baillie, G. S. (2015). The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Science OA, 1(3). https://doi.org/10.4155/fso.15.9
Mayo Clinic. (2023a, March 14). Type 2 diabetes. Mayo Clinic; Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193
Mayo Clinic. (2023b, May 13). Amyloidosis - Symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/amyloidosis/symptoms-causes/syc-20353178
Mayo Clinic. (2023c, November 18). Hypoglycemia - Symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hypoglycemia/symptoms-causes/syc-20373685
Mayo Clinic. (2024, July 5). Bariatric surgery . Mayoclinic.org. https://www.mayoclinic.org/tests-procedures/bariatric-surgery/about/pac-20394258
Mayo Clinic . (2022, August 20). Hyperglycemia in Diabetes - Symptoms and Causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/hyperglycemia/symptoms-causes/syc-20373631
Mayo Clinic Staff. (2023, February 11). Eye twitching. Mayo Clinic. https://www.mayoclinic.org/symptoms/eye-twitching/basics/definition/sym-20050838#:~:text=The%20most%20common%20type%20of
Mayo Clinic. (2022b, April 29). Diabetic neuropathy - Symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/diabetic-neuropathy/symptoms-causes/syc-20371580
MedlinePlus. (2022). Hemoglobin A1C (HbA1c) Test: MedlinePlus Lab Test Information. Medlineplus.gov. https://medlineplus.gov/lab-tests/hemoglobin-a1c-hba1c-test/
Melkonian, E. A., Schury, M. P., & Asuka, E. (2019). Physiology, Gluconeogenesis. In Nih.gov. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK541119/
Mental Health Foundation. (2018). Stress: statistics. Mental Health Foundation. https://www.mentalhealth.org.uk/explore-mental-health/statistics/stress-statistics
Metformin: MedlinePlus Drug Information. (2024, February 15). Medlineplus.gov. https://medlineplus.gov/druginfo/meds/a696005.html#:~:text=Metformin%20helps%20to%20control%20the
Mîinea, Cristinel P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J., Lane, William S., & Lienhard, Gustav E. (2005). AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochemical Journal, 391(1), 87–93. https://doi.org/10.1042/bj20050887
Milstein, J. L., & Ferris, H. A. (2021). The brain as an insulin-sensitive metabolic organ. Molecular Metabolism, 52, 101234. https://doi.org/10.1016/j.molmet.2021.101234
Misset, O., et al. (2013). Proteolysis - an overview | ScienceDirect Topics. Sciencedirect.com. https://www.sciencedirect.com/topics/neuroscience/proteolysis
Moffat, S. D., An, Y., Resnick, S. M., Diamond, M. P., & Ferrucci, L. (2019). Longitudinal Change in Cortisol Levels Across the Adult Life Span. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 75(2), 394–400. https://doi.org/10.1093/gerona/gly279
Moraes, T. J., et al. (2014). Toll Like Receptor 4 - an overview | ScienceDirect Topics. Sciencedirect.com. https://www.sciencedirect.com/topics/medicine-and-dentistry/toll-like-receptor-4
National Academy of Sciences. (2011). Overview of the Glutamatergic System. In Nih.gov. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK62187/
National Cancer Institute. (n.d.). NCI Dictionary of Cancer Terms. Cancer.gov; Cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/myc-gene-family
National Cancer Institute. (2011a, February 2). Www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/autologous
National Cancer Institute. (2011b, February 2). Www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/islet-cell
National Cancer Institute. (2019). NCI Dictionary of Cancer Terms. National Cancer Institute; Cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/apoptosis
National Institute of Diabetes and Digestive and Kidney Diseases. (2018, February). What Is Diabetic Neuropathy? | NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/nerve-damage-diabetic-neuropathies/what-is-diabetic-neuropathy
National Institute of Diabetes and Digestive and Kidney Diseases. (2019, April 12). Insulin, medicines, & other diabetes treatments. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/insulin-medicines-treatments
National Institutes of Health. (2016). Stem Cell Basics. Stemcells.nih.gov; National Institutes of Health. https://stemcells.nih.gov/info/basics/stc-basics
National Institutes of Health. (2023, April 17). Office of Dietary Supplements - Carnitine. Nih.gov. https://ods.od.nih.gov/factsheets/Carnitine-HealthProfessional/
Negoro, S., et al. (n.d.). Oligomer - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/chemistry/oligomer
Nelson, A. (2024). Treatment for Diabetic Neuropathy Using Repetitive Transcranial Magnetic Stimulation. Clinicaltrials.gov. https://clinicaltrials.gov/study/NCT06482827?cond=Diabetic%20Neuropathy&rank=1
NHS . (2022, September 7). What happens - Stem cell and bone marrow transplants. NHS. https://www.nhs.uk/conditions/stem-cell-transplant/what-happens/
NIDDK. (2023, April). What is Diabetes? | NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes#:~:text=Diabetes%20is%20a%20disease%20that
Pal, M. M. (2021). Glutamate: the Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Frontiers in Human Neuroscience, 15(15). https://doi.org/10.3389/fnhum.2021.722323
PI3K Akt Pathway. (2016). Cell Signaling Technology. https://www.cellsignal.com/pathways/pathways-akt-signaling#:~:text=Akt%20regulates%20cell%20growth%20through
Raben, D. M., et al. (n.d.). 6-Phosphofructo-2-Kinase. ScienceDirect. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/6-phosphofructo-2-kinase#:~:text=6%2DPhosphofructo%2D2%2Dkinase%2Ffructose%2D2%2C,bisphosphate%20(F2%2C6BP)
Rahbar, S., et al. (n.d.). Glycation - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycation
Riley, L. (n.d.). Mean fasting blood glucose. World Health Organization. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=The%20expected%20values%20for%20normal
Rorsman, P., & Ashcroft, F. M. (2018). Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiological Reviews, 98(1), 117–214. https://doi.org/10.1152/physrev.00008.2017
Rowley, W. R., Bezold, C., Arikan, Y., Byrne, E., & Krohe, S. (2017). Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Population Health Management, 20(1), 6–12. https://doi.org/10.1089/pop.2015.0181
Sabatini, P. V., Speckmann, T., & Lynn, F. C. (2019). Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Molecular Metabolism, 21, 1–12. https://doi.org/10.1016/j.molmet.2018.12.007
Sahay, A. S., et al. (n.d.). Neurotrophin - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/neuroscience/neurotrophin
Santiago, J. A., Karthikeyan, M., Lackey, M., Villavicencio, D., & Potashkin, J. A. (2023). Diabetes: a tipping point in neurodegenerative diseases. Trends in Molecular Medicine, 29(12), 1029–1044. https://doi.org/10.1016/j.molmed.2023.09.005
Schernthaner-Reiter, M. H., Wolf, P., Vila, G., & Luger, A. (2021). The Interaction of Insulin and Pituitary Hormone Syndromes. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.626427
Schooneman, M. G., Vaz, F. M., Houten, S. M., & Soeters, M. R. (2013). Acylcarnitines. Diabetes, 62(1), 1–8. https://doi.org/10.2337/db12-0466
Sears, B., & Perry, M. (2015). The role of fatty acids in insulin resistance. Lipids in Health and Disease, 14(1). https://doi.org/10.1186/s12944-015-0123-1
Sessa, L., Gatti, E., Zeni, F., Antonelli, A., Catucci, A., Koch, M., Pompilio, G., Fritz, G., Raucci, A., & Bianchi, M. E. (2014). The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMs). PLoS ONE, 9(1), e86903. https://doi.org/10.1371/journal.pone.0086903
Shokoples, B. G., Paradis, P., & Schiffrin, E. L. (2021). P2X7 Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(1), 186–199. https://doi.org/10.1161/ATVBAHA.120.315116
Soedamah-Muthu, S. S., Chaturvedi, N., Witte, D. R., Stevens, L. K., Porta, M., & Fuller, J. H. (2008). Relationship Between Risk Factors and Mortality in Type 1 Diabetic Patients in Europe: The EURODIAB Prospective Complications Study (PCS). Diabetes Care, 31(7), 1360–1366. https://doi.org/10.2337/dc08-0107
Söldner, C. A., Sticht, H., & Horn, A. H. C. (2017). Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry. PLoS ONE, 12(10), e0186347. https://doi.org/10.1371/journal.pone.0186347
Spitzhorn, L.-S., Megges, M., Wruck, W., Rahman, M. S., Otte, J., Degistirici, Ö., Meisel, R., Sorg, R. V., Oreffo, R. O. C., & Adjaye, J. (2019). Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Research & Therapy, 10(1). https://doi.org/10.1186/s13287-019-1209-x
Stem Cells in the Treatment of Diabetes | Cryo-Cell. (2019). Cryo-Cell.com. https://www.cryo-cell.com/treatments-and-research/diabetes#:~:text=In%20the%20study%2C%20the%20type
Stöckli, J., Fazakerley, D. J., & James, D. E. (2011). GLUT4 exocytosis. Journal of Cell Science, 124(24), 4147–4159. https://doi.org/10.1242/jcs.097063
Surat, P. (2022, December 21). Induced Pluripotent Stem (iPS) Cells: Discovery, Advantages and CRISPR Cas9 Gene Editing. News-Medical.net. https://www.news-medical.net/life-sciences/Induced-Pluripotent-Stem-(iPS)-Cells-Discovery-Advantages-and-CRISPR-Cas9-Gene-Editing.aspx#:~:text=Muhammad%20Khan%20%7C%20TEDxBrentwoodCollegeSchool-
Taborsky, G. J., & Mundinger, T. O. (2012). Minireview: The Role of the Autonomic Nervous System in Mediating the Glucagon Response to Hypoglycemia. Endocrinology, 153(3), 1055–1062. https://doi.org/10.1210/en.2011-2040
Takai, T. (2002). Roles of Fc receptors in autoimmunity. Nature Reviews Immunology, 2(8), 580–592. https://doi.org/10.1038/nri856
Terpstra, M., Moheet, A., Kumar, A., Eberly, L. E., Seaquist, E., & Öz, G. (2014). Changes in Human Brain Glutamate Concentration during Hypoglycemia: Insights into Cerebral Adaptations in Hypoglycemia-Associated Autonomic Failure in Type 1 Diabetes. Journal of Cerebral Blood Flow & Metabolism, 34(5), 876–882. https://doi.org/10.1038/jcbfm.2014.32
Thau, L., Gandhi, J., & Sharma, S. (2023). Physiology, cortisol. In National Library of Medicine. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK538239/
Turski, G. N., & Ikonomidou, C. (2014). Glutamate as a Neurotoxin(abstract). Handbook of Neurotoxicity, 365–397. https://doi.org/10.1007/978-1-4614-5836-4_84
UCLA. (n.d.). Induced pluripotent stem cells | UCLA BSCRC. Stemcell.ucla.edu. https://stemcell.ucla.edu/glossary/induced-pluripotent-stem-cells#:~:text=Induced%20pluripotent%20stem%20cells%20are
Unnikrishnan, R., Pradeepa, R., Joshi, S. R., & Mohan, V. (2017). Type 2 Diabetes: Demystifying the Global Epidemic. Diabetes, 66(6), 1432–1442. https://doi.org/10.2337/db16-0766
Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The -Secretase Enzyme BACE in Health and Alzheimer’s Disease: Regulation, Cell Biology, Function, and Therapeutic Potential. Journal of Neuroscience, 29(41), 12787–12794. https://doi.org/10.1523/jneurosci.3657-09.2009
Vinik, A. I. (2003). Management of neuropathy and foot problems in diabetic patients. Clinical Cornerstone, 5(2), 38–55. https://doi.org/10.1016/s1098-3597(03)90017-2
Wang, D., et al. (n.d.). Guanosine Triphosphate - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/medicine-and-dentistry/guanosine-triphosphate
World Health Organization. (2022, October 1). Ageing and health. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
World Health Organization. (2023). Diabetes. Www.who.int; WHO. https://www.who.int/news-room/fact-sheets/detail/diabetes#:~:text=Diabetes%20is%20a%20chronic%20disease
Wu, C., Khan, S. A., Peng, L.-J., & Lange, A. J. (2006). Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes(abstract). Advances in Enzyme Regulation, 46(1), 72–88. https://doi.org/10.1016/j.advenzreg.2006.01.010
Wu, J., Li, T., Guo, M., Ji, J., Meng, X., Fu, T., Nie, T., Wei, T., Zhou, Y., Dong, W., Zhang, M., Shi, Y., Cheng, X., & Yin, H. (2024). Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue. Cell Discovery, 10(1), 1–5. https://doi.org/10.1038/s41421-024-00662-3
Xia, C., Braunstein, Z., Toomey, A. C., Zhong, J., & Rao, X. (2018). S100 Proteins As an Important Regulator of Macrophage Inflammation. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.01908
Xu, X., & Xu, D.-S. (2021). Prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. Neural Regeneration Research, 16(5), 955. https://doi.org/10.4103/1673-5374.297062
Yagihashi, S., Mizukami, H., & Sugimoto, K. (2011). Mechanism of diabetic neuropathy: Where are we now and where to go? Journal of Diabetes Investigation, 2(1), 18–32. https://doi.org/10.1111/j.2040-1124.2010.00070.x
Yang, L., Hu, Z.-M., Jiang, F.-X., & Wang, W. (2022). Stem cell therapy for insulin-dependent diabetes: Are we still on the road? World Journal of Stem Cells, 14(7), 503–512. https://doi.org/10.4252/wjsc.v14.i7.503
Zhang, Y., & Bhavnani, B. R. (2006). Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neuroscience, 7(1), 49. https://doi.org/10.1186/1471-2202-7-49
Zhou, X., et al. (n.d.). GTPase - an overview | ScienceDirect Topics. Sciencedirect.com. https://www.sciencedirect.com/topics/neuroscience/gtpase
Zimmet, P. Z. (2017). Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology, 3(1). https://doi.org/10.1186/s40842-016-0039-3
Published
How to Cite
Issue
Section
Copyright (c) 2024 Raza Noor; Dr. Jobin Varkey, Virgel Torremocha, Jothsna Kethar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


