Leveraging Machine Learning for Accurate Star Formation Rate Predictions with MAGPHYS
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8404Keywords:
Star Formation Rate, Machine Learning, Galactic Evolution, Galaxy, Star, MAGPHYSAbstract
Star formation rates (SFRs) are pivotal for understanding the growth of stars, galaxies, and the universe. Understanding SFR is essential for insights into galaxy evolution, stellar populations, cosmology, and interstellar dynamics. SFR analysis is well-suited to machine learning due to its complexity and volume of data. In our study, we utilized machine learning models on a dataset containing various factors such as gas luminosity, star formation timescale, and metallicity to predict SFRs. Our models included Linear Regression, Lasso Regression, and a neural network. Both Linear Regression and Lasso Regression yielded low mean squared error values, with the neural network achieving even lower values, demonstrating the superior performance of deep learning in determining SFRs. Additionally, we assessed feature importance for the Linear and Lasso Regression models, identifying which factors most significantly influence SFR predictions. From our analysis, we concluded that the aforementioned factors are crucial for accurately identifying SFRs in a galaxy, as our results showed that machine learning can predict SFRs with a mean squared error of 0.000939 and R-squared of 0.4808 based on galactic properties. Furthermore, we used graphs to illustrate the relationships between SFRs and different galactic properties, providing visual evidence of these connections. Our findings underscore the potential of machine learning in astrophysical research, particularly in predicting and understanding the intricate processes that govern star formation in various galactic environments. This approach can significantly enhance our comprehension of the universe's evolution.
Downloads
References or Bibliography
Agarap, A. F. M. (2018). Deep learning using rectified linear units (ReLU). arxiv. https://doi.org/10.48550/arXiv.1803.08375
Bonjean, V., Aghanim, N., Salomé, P., Beelen, A., Douspis, M., & Soubrié, E. (2019, February 8). Star formation rates and stellar masses from machine learning. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201833972
Boquien, M., Buat, V., & Perret, V. (2014, November 13). Impact of star formation history on the measurement of star formation rates. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201424441
Calzetti, D. (2007, July 3). Star formation rate determinations. arXiv.org. https://doi.org/10.48550/arXiv.0707.0467
Colless, M. (1999). First results from the 2df galaxy redshift survey. 2dfgrs.net. https://doi.org/10.48550/arXiv.astro-ph/9804079
Cucciati, O., Tresse, L., Ilbert, O., Fèvre, O. L., Garilli, B., Brun, V. L., Cassata, P., Franzetti, P., Maccagni, D., Scodeggio, M., Zucca, E., Zamorani, G., Bardelli, S., Bolzonella, M., Bielby, R. M., McCracken, H. J., Zanichelli, A., & Vergani, D. (2012, February 23). The star formation rate density and dust attenuation evolution over 12 Gyr with the VVDS surveys. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201118010
Cunha, E. da, & Charlot, S. (n.d.). MAGPHYS multi-wavelength analysis of galaxy physical ... iap.fr. http://www.iap.fr/magphys/ewExternalFiles/readme.pdf
Driver, S. P., Bellstedt, S., Robotham, A. S. G., Baldry, I. K., Davies, L. J., Liske, J., Obreschkow, D., Taylor, E. N., Wright, A. H., Alpaslan, M., Bamford, S. P., Bauer, A. E., Bland-Hawthorn, J., Bilicki, M., Bravo, M., Brough, S., Casura, S., Cluver, M. E., Colless, M., … Wilkins, S. M. (2022, June). Galaxy and Mass Assembly (GAMA): Data release 4 and the Z < 0.1 total and z < 0.08 morphological galaxy stellar mass functions. NASA/ADS. https://doi.org/10.1093/mnras/stac472
Eisenstein, D. J., Weinberg, D. H., Agol, E., Aihara, H., Allende Prieto, C., Anderson, S. F., Arns, J. A., Aubourg, É., Bailey, S., Balbinot, E., Barkhouser, R., Beers, T. C., Berlind, A. A., Bickerton, S. J., Bizyaev, D., Blanton, M. R., Bochanski, J. J., Bolton, A. S., Bosman, C. T., … Zhao, B. (2011, September). SDSS-III: Massive spectroscopic surveys of the distant universe, the milky way, and extra-solar planetary systems. NASA/ADS. https://doi.org/10.48550/arXiv.1101.1529
Graus, A. S., Bullock, J. S., Fitts, A., Cooper, M. C., Boylan-Kolchin, M., Weisz, D. R., Wetzel, A., Feldmann, R., Faucher-Giguère, C.-A., Quataert, E., Hopkins, P. F., & Keres̆, D. (2019, September 21). A predicted correlation between age gradient and star formation history in fire dwarf galaxies. OUP Academic. https://doi.org/10.1093/mnras/stz2649
Hocuk, S., Schleicher, D. R. G., Spaans, M., & Cazaux, S. (2012, September 4). The impact of magnetic fields on the IMF in star-forming clouds near a supermassive black hole. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201219628
John, M., Tremonti, C. A., & Kennicutt, R. C. (2006, May 10). Optical star formation rate indicators. The Astrophysical Journal. https://doi.org/10.48550/arXiv.astro-ph/0511730
Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G., & Couch, W. J. (2003, September). The Millennium Galaxy Catalogue: 16 <=Bmgc < 24 galaxy counts and the calibration of the local galaxy luminosity function. NASA/ADS. https://doi.org/10.1046/j.1365-8711.2003.06826.x
McKee, C. F., & Ostriker, E. C. (2007, September 22). Theory of star formation. Annual Review of Astronomy and Astrophysics. https://doi.org/10.48550/arXiv.0707.3514
Neronov, A., Malyshev, D., & Semikoz, D. V. (2017, September 29). Cosmic-Ray Spectrum in the local galaxy. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201731149
Peeters, E., Spoon, H. W. W., & Tielens4, A. G. G. M. (2004, October 1). IOPscience. The Astrophysical https://doi.org/10.1086/423237
Rosen, A. L., Krumholz, M. R., https://orcid.org/0000-0003-4423-0660, A. L. R., & https://orcid.org/0000-0003-3893-854X, M. R. K. (2020, July 23). IOPscience. The Astronomical Journal. https://doi.org/10.48550/arXiv.2006.04829
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arxiv. https://doi.org/10.48550/arXiv.1609.04747
Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks. ijeast.com. https://ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
Surana, S., Wadadekar, Y., Bait, O., & Bhosale, H. (2020, February 26). Predicting star formation properties of galaxies using Deep Learning. OUP Academic. https://doi.org/10.1093/mnras/staa537
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JSTOR. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Yates, R. M., Kauffmann, G., & Guo, Q. (2012, April 17). The relation between metallicity, Stellar Mass and star formation in galaxies: An analysis of observational and model data. OUP Academic. https://doi.org/10.1111/j.1365-2966.2012.20595.x
Published
How to Cite
Issue
Section
Copyright (c) 2024 Vishnu Parthasarathy; Victoria Lloyd

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


