Leveraging Machine Learning for Accurate Star Formation Rate Predictions with MAGPHYS

Authors

  • Vishnu Parthasarathy Inspirit AI
  • Victoria Lloyd

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8404

Keywords:

Star Formation Rate, Machine Learning, Galactic Evolution, Galaxy, Star, MAGPHYS

Abstract

Star formation rates (SFRs) are pivotal for understanding the growth of stars, galaxies, and the universe. Understanding SFR is essential for insights into galaxy evolution, stellar populations, cosmology, and interstellar dynamics. SFR analysis is well-suited to machine learning due to its complexity and volume of data. In our study, we utilized machine learning models on a dataset containing various factors such as gas luminosity, star formation timescale, and metallicity to predict SFRs. Our models included Linear Regression, Lasso Regression, and a neural network. Both Linear Regression and Lasso Regression yielded low mean squared error values, with the neural network achieving even lower values, demonstrating the superior performance of deep learning in determining SFRs. Additionally, we assessed feature importance for the Linear and Lasso Regression models, identifying which factors most significantly influence SFR predictions. From our analysis, we concluded that the aforementioned factors are crucial for accurately identifying SFRs in a galaxy, as our results showed that machine learning can predict SFRs with a mean squared error of 0.000939 and R-squared of 0.4808 based on galactic properties. Furthermore, we used graphs to illustrate the relationships between SFRs and different galactic properties, providing visual evidence of these connections. Our findings underscore the potential of machine learning in astrophysical research, particularly in predicting and understanding the intricate processes that govern star formation in various galactic environments. This approach can significantly enhance our comprehension of the universe's evolution.

Downloads

Download data is not yet available.

References or Bibliography

Agarap, A. F. M. (2018). Deep learning using rectified linear units (ReLU). arxiv. https://doi.org/10.48550/arXiv.1803.08375

Bonjean, V., Aghanim, N., Salomé, P., Beelen, A., Douspis, M., & Soubrié, E. (2019, February 8). Star formation rates and stellar masses from machine learning. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201833972

Boquien, M., Buat, V., & Perret, V. (2014, November 13). Impact of star formation history on the measurement of star formation rates. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201424441

Calzetti, D. (2007, July 3). Star formation rate determinations. arXiv.org. https://doi.org/10.48550/arXiv.0707.0467

Colless, M. (1999). First results from the 2df galaxy redshift survey. 2dfgrs.net. https://doi.org/10.48550/arXiv.astro-ph/9804079

Cucciati, O., Tresse, L., Ilbert, O., Fèvre, O. L., Garilli, B., Brun, V. L., Cassata, P., Franzetti, P., Maccagni, D., Scodeggio, M., Zucca, E., Zamorani, G., Bardelli, S., Bolzonella, M., Bielby, R. M., McCracken, H. J., Zanichelli, A., & Vergani, D. (2012, February 23). The star formation rate density and dust attenuation evolution over 12 Gyr with the VVDS surveys. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201118010

Cunha, E. da, & Charlot, S. (n.d.). MAGPHYS multi-wavelength analysis of galaxy physical ... iap.fr. http://www.iap.fr/magphys/ewExternalFiles/readme.pdf

Driver, S. P., Bellstedt, S., Robotham, A. S. G., Baldry, I. K., Davies, L. J., Liske, J., Obreschkow, D., Taylor, E. N., Wright, A. H., Alpaslan, M., Bamford, S. P., Bauer, A. E., Bland-Hawthorn, J., Bilicki, M., Bravo, M., Brough, S., Casura, S., Cluver, M. E., Colless, M., … Wilkins, S. M. (2022, June). Galaxy and Mass Assembly (GAMA): Data release 4 and the Z < 0.1 total and z < 0.08 morphological galaxy stellar mass functions. NASA/ADS. https://doi.org/10.1093/mnras/stac472

Eisenstein, D. J., Weinberg, D. H., Agol, E., Aihara, H., Allende Prieto, C., Anderson, S. F., Arns, J. A., Aubourg, É., Bailey, S., Balbinot, E., Barkhouser, R., Beers, T. C., Berlind, A. A., Bickerton, S. J., Bizyaev, D., Blanton, M. R., Bochanski, J. J., Bolton, A. S., Bosman, C. T., … Zhao, B. (2011, September). SDSS-III: Massive spectroscopic surveys of the distant universe, the milky way, and extra-solar planetary systems. NASA/ADS. https://doi.org/10.48550/arXiv.1101.1529

Graus, A. S., Bullock, J. S., Fitts, A., Cooper, M. C., Boylan-Kolchin, M., Weisz, D. R., Wetzel, A., Feldmann, R., Faucher-Giguère, C.-A., Quataert, E., Hopkins, P. F., & Keres̆, D. (2019, September 21). A predicted correlation between age gradient and star formation history in fire dwarf galaxies. OUP Academic. https://doi.org/10.1093/mnras/stz2649

Hocuk, S., Schleicher, D. R. G., Spaans, M., & Cazaux, S. (2012, September 4). The impact of magnetic fields on the IMF in star-forming clouds near a supermassive black hole. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201219628

John, M., Tremonti, C. A., & Kennicutt, R. C. (2006, May 10). Optical star formation rate indicators. The Astrophysical Journal. https://doi.org/10.48550/arXiv.astro-ph/0511730

Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G., & Couch, W. J. (2003, September). The Millennium Galaxy Catalogue: 16 <=Bmgc < 24 galaxy counts and the calibration of the local galaxy luminosity function. NASA/ADS. https://doi.org/10.1046/j.1365-8711.2003.06826.x

McKee, C. F., & Ostriker, E. C. (2007, September 22). Theory of star formation. Annual Review of Astronomy and Astrophysics. https://doi.org/10.48550/arXiv.0707.3514

Neronov, A., Malyshev, D., & Semikoz, D. V. (2017, September 29). Cosmic-Ray Spectrum in the local galaxy. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/201731149

Peeters, E., Spoon, H. W. W., & Tielens4, A. G. G. M. (2004, October 1). IOPscience. The Astrophysical https://doi.org/10.1086/423237

Rosen, A. L., Krumholz, M. R., https://orcid.org/0000-0003-4423-0660, A. L. R., & https://orcid.org/0000-0003-3893-854X, M. R. K. (2020, July 23). IOPscience. The Astronomical Journal. https://doi.org/10.48550/arXiv.2006.04829

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arxiv. https://doi.org/10.48550/arXiv.1609.04747

Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks. ijeast.com. https://ijeast.com/papers/310-316,Tesma412,IJEAST.pdf

Surana, S., Wadadekar, Y., Bait, O., & Bhosale, H. (2020, February 26). Predicting star formation properties of galaxies using Deep Learning. OUP Academic. https://doi.org/10.1093/mnras/staa537

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JSTOR. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Yates, R. M., Kauffmann, G., & Guo, Q. (2012, April 17). The relation between metallicity, Stellar Mass and star formation in galaxies: An analysis of observational and model data. OUP Academic. https://doi.org/10.1111/j.1365-2966.2012.20595.x

Published

11-30-2024

How to Cite

Parthasarathy, V., & Lloyd, V. (2024). Leveraging Machine Learning for Accurate Star Formation Rate Predictions with MAGPHYS. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8404

Issue

Section

HS Research Projects