Development and Analysis of a Wearable Biopatch for Electrocardiogram Monitoring and Hydration Assessment
DOI:
https://doi.org/10.47611/jsrhs.v14i1.8339Keywords:
Electrocardiogram, Hydration Monitoring, Wearable Sensors, BiopatchAbstract
Biopatch is emerging as an innovative device in the field of health monitoring. The goal of this article is to create an adhesive biopatch that can be applied to the user's skin to measure electrocardiogram (ECG), body temperature, and inertial measurement unit (IMU) data. Then, sets of data are then collected in four different environments: running with and without water intake, and resting with and without water intake. In this case, the ECG data was analyzed to indicate the user's hydration state. Future applications of this data involve the integration of machine learning algorithms to predict hydration levels, contributing to essential health monitoring. Although this technology has the potential to improve personal healthcare, more research and technological advancement are needed to reach its full potential.
Downloads
References or Bibliography
Stoppa, M., & Chiolerio, A. (2014). Wearable Electronics and smart textiles: A critical review. Sensors, 14(7), 11957–11992. https://doi.org/10.3390/s140711957
Kim, Y., Kim, J., Chicas, R., Xiuhtecutli, N., Matthews, J., Zavanelli, N., Kwon, S., Lee, S. H., Hertzberg, V. S., & Yeo, W. (2022). Soft wireless bioelectronics designed for real‐time, Continuous Health Monitoring of farmworkers. Advanced Healthcare Materials, 11(13). https://doi.org/10.1002/adhm.202200170
Ban, S., Lee, Y. J., Kwon, S., Kim, Y.-S., Chang, J. W., Kim, J.-H., & Yeo, W.-H. (2023). Soft wireless headband bioelectronics and electrooculography for persistent human–machine interfaces. ACS Applied Electronic Materials, 5(2), 877–886. https://doi.org/10.1021/acsaelm.2c01436
Kang, T. W., Lee, J., Kwon, Y., Lee, Y. J., & Yeo, W. (2024). Recent progress in the development of flexible wearable electrodes for electrocardiogram monitoring during exercise. Advanced NanoBiomed Research, 4(8). https://doi.org/10.1002/anbr.202300169
Xu, S., Zhang, Y., Jia, L., Mathewson, K. E., Jang, K.-I., Kim, J., Fu, H., Huang, X., Chava, P., Wang, R., Bhole, S., Wang, L., Na, Y. J., Guan, Y., Flavin, M., Han, Z., Huang, Y., & Rogers, J. A. (2014). Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 344(6179), 70–74. https://doi.org/10.1126/science.1250169
Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–236.
Clifford, G. D., Azuaje, F., & McSharry, P. (2006). Advanced Methods and Tools for ECG Data Analysis. Artech House.
Moody, G. B., & Mark, R. G. (2001). The impact of data preprocessing in the development of clinical ECG analysis algorithms. IEEE Transactions on Biomedical Engineering, 48(5), 499-506. https://doi.org/10.1109/10.915647
Inan, O. T., Migeotte, P. F., Park, K. S., Etemadi, M., Tavakolian, K., Casanella, R., & Di Rienzo, M. (2015). Wearable Ballistocardiography and Seismocardiography: A Review. IEEE Journal of Biomedical and Health Informatics, 19(4), 1414-1427. https://doi.org/10.1109/JBHI.2014.2361732
Aziz, S., Ahmed, S., & Alouini, M.-S. (2021). ECG-based machine-learning algorithms for Heartbeat classification. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97118-5
Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural networks. Information Sciences, 405, 81-90. https://doi.org/10.1016/j.ins.2017.04.012
Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A. Y. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(1), 65–69. https://doi.org/10.1038/s41591-018-0268-3
Casa, D. J., Clarkson, P. M., & Roberts, W. O. (2005). Exercise-Induced Heat Stress and Cardiovascular Strain: Importance of Hydration. American Journal of Sports Medicine, 33(5), 1123-1130. https://doi.org/10.1177/0363546504274125
Montain, S. J., & Coyle, E. F. (1992). Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. Journal of Applied Physiology, 73(4), 1340-1350. https://doi.org/10.1152/jappl.1992.73.4.1340
Casa, D. J., Armstrong, L. E., Hillman, S. K., Montain, S. J., Reiff, R. V., Rich, B. S., & Stone, J. A. (2000). National Athletic Trainers' Association Position Statement: Fluid replacement for athletes. Journal of Athletic Training, 35(2), 212-224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1323420/
Vargas, N. T., & Marino, F. E. (2016). Superior heart rate variability and lower ventilatory response to exercise in athletes: Associations with hydration status and temperature regulation. Physiology & Behavior, 165, 276-283. https://doi.org/10.1016/j.physbeh.2016.08.008
Noakes, T. D. (2003). Fluid replacement during exercise. Exercise and Sport Sciences Reviews, 31(2), 130-135. https://doi.org/10.1097/00003677-200304000-00010
Armstrong, L. E. (2007). Assessing hydration status: The elusive gold standard. Journal of the American College of Nutrition, 26(Suppl 5), 575S-584S. https://doi.org/10.1080/07315724.2007.10719661
Almeida, M., Bottino, A., Ramos, P., & Araujo, C. G. (2019). Measuring heart rate during exercise: From artery palpation to monitors and apps. International Journal of Cardiovascular Sciences, 32(4), 396–407. https://doi.org/10.5935/2359-4802.20190061
Savvides, A., Giannaki, C. D., Vlahoyiannis, A., Stavrinou, P. S., & Aphamis, G. (2020). Effects of Dehydration on Archery Performance, Subjective Feelings and Heart Rate during a Competition Simulation. Journal of Functional Morphology and Kinesiology, 5(3), 67. https://doi.org/10.3390/jfmk5030067
Shephard, R. J. (2007). American College of Sports Medicine Position Stand: Exercise and Fluid Replacement. Yearbook of Sports Medicine, 2007, 254–255. https://doi.org/10.1016/s0162-0908(08)70206-x
Weiner, I. D., & Wingo, C. S. (1998). Hyperkalemia. Journal of the American Society of Nephrology, 9(8), 1535–1543. https://doi.org/10.1681/asn.v981535
Published
How to Cite
Issue
Section
Copyright (c) 2025 Jiho Jun; Dr. Yeo, Taewoog Kang

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


