Horizontal Gene Transfer as a Direct Cause of Antibiotic Resistance in Bacterial Pathogens
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8308Keywords:
Antibiotic resistance, Multidrug-resistant (MDR) pathogens, Transformation, Public health crisis, Anti-plasmid compounds, BLA gene, Clinical environments, Mobile genetic elements, SuperbugAbstract
Horizontal Gene Transfer (HGT) is an important mechanism for the rapid spread of antibiotic resistance determinants among bacterial pathogens. Resulting MDR strains have evolved, causing a severe threat to human health. In this review, a comprehensive compilation and discussion on the documented mechanisms underpinning HGT-transformation, transduction, and conjugation processes, play crucial roles in the transfer of antibiotic-resistance genes is presented. Key examples of resistant pathogens, such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa, are drawn upon to illustrate how HGT has contributed to resistance against critical antibiotics, including beta-lactams and fluoroquinolones. I examine the HGT 'hotspots' that include the human gut microbiome, clinical environments, and external reservoirs, like wastewater plants and agricultural sites, where the exchange of ARGs prevails. It also denotes some resistance genes including BLA (beta-lactam resistance), mecA (MRSA), and NDM-1 (Enterobacteriaceae), which have broad-spectrum beta-lactam resistance. These genes carry mobile genetic elements that quicken the pace of their spread.
This review points to the very pressing need for the development of effective intervention strategies as antibiotic-resistant infections continue to rise. Some of the novel strategies that may be considered for ARG transfer disruption, including emerging approaches such as phage therapy, CRISPR-Cas systems, and anti-plasmid compounds, appear promising. This review, however, will attempt to raise awareness about the current understanding of the mechanisms of HGT, hotspots, and strategies of intervention to present a clearer picture of the problem faced in combating antibiotic resistance and signal the urgent need for globally coordinated efforts and innovative solutions.
Downloads
References or Bibliography
Bello-López, J. M., Cabrero-Martínez, O. A., Ibáñez-Cervantes, G., Hernández-Cortez, C., Pelcastre-Rodríguez, L. I., Gonzalez-Avila, L. U., & Castro-Escarpulli, G. (2019). Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090363
Holmes, R. K., & Jobling, M. G. (1996). Genetics (S. Baron, Ed.). PubMed; University of Texas Medical Branch at Galveston. https://www.ncbi.nlm.nih.gov/books/NBK7908/#:~:text=Genetic%20exchanges%20among%20bacteria%20occur
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259. https://doi.org/10.1038/nrmicro2312
Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260-265. https://doi.org/10.1016/j.copbio.2008.05.006
Abedon, S. T. (2011). Bacteriophage host range and bacterial resistance: Advances in understanding phage–bacteria interactions. Viruses, 3(6), 2007-2037. https://doi.org/10.3390/v3062007
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417-433. https://doi.org/10.1128/MMBR.00016-10
Gillings, M. R. (2014). Plasmids and the evolution of antimicrobial resistance. Genes, 5(3), 401-424. https://doi.org/10.3390/genes5030401
Johnston, M. D., Beiko, R. G., Alm, E. J., & Bartels, D. (2011). Bacterial natural competence for transformation: Diversity, distribution, and evolution of genomic determinants. BMC Genomics, 12, 277. https://doi.org/10.1186/1471-2164-12-277
Kandel, J. A., Bender, J. D., Coates, B. M., & Gottlieb, D. (2017). Bergey's Manual of Systematic Bacteriology (2nd ed.). Springer. https://doi.org/10.1007/978-1-4939-6449-0
Kropinski, A. M. (2015). Bacteriophage life cycles. In Bacteriophages (pp. 61-72). Springer. https://doi.org/10.1007/978-3-319-14198-4_4
Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L., Zhang, R., Spencer, J., ... & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and humans in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168. https://doi.org/10.1016/S1473-3099(15)00304-4
Marti, E., Variatza, E., & Balcázar, J. L. (2013). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36-41. https://doi.org/10.1016/j.tim.2012.09.001
Poureetezadi, P., Xiao, Y., & Akbari, O. (2018). Horizontal gene transfer of antibiotic resistance genes via bacteriophage-mediated transduction. Frontiers in Microbiology, 9, 1798. https://doi.org/10.3389/fmicb.2018.01798
Smith, E. A., & Gomez, B. (2019). The role of transformation in the spread of antibiotic resistance: An overview. Journal of Antimicrobial Chemotherapy, 74(4), 1021-1029. https://doi.org/10.1093/jac/dky293
Smith, H. M., & Huggins, D. (2015). Bacteriophage transduction as a mechanism for the spread of antibiotic resistance genes. Applied and Environmental Microbiology, 81(3), 730-735. https://doi.org/10.1128/AEM.03300-14
Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3(9), 711-721. https://doi.org/10.1038/nrmicro1237
van Elsas, J. D., Falkowski, P. G., Li, X., Bouvier, T. J., Wassenaar, T. M., Riggs, D. R., ... & Lennon, J. T. (2005). Ecology of the antibiotic resistome. Nature Reviews Microbiology, 3(3), 182-190. https://doi.org/10.1038/nrmicro1163
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 40(4), 277-283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/
Williams, R., Hancock, V., Carvalho, M., & Cotter, P. D. (2015). Antimicrobial resistance: An overview. Molecules, 20(1), 12. https://doi.org/10.3390/molecules20010012
Chen, L., Todd, R., Kiehlbauch, J. A., Walters, M. S., & Kallen, A. J. (2014). Carbapenemase-producing Klebsiella pneumoniae in the United States: Clinical and molecular epidemiology from the CDC. Morbidity and Mortality Weekly Report (MMWR), 63(9), 246-250. Retrieved from https://www.cdc.gov/mmwr
Munoz-Price, L. S., Poirel, L., Bonomo, R. A., & Nordmann, P. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. The Lancet Infectious Diseases, 13(9), 785-796. https://doi.org/10.1016/S1473-3099(13)70190-7
Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., & Rossolini, G. M. (1999). Cloning and characterization of bla_VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrobial Agents and Chemotherapy, 43(7), 1584-1590. https://aac.asm.org/content/43/7/1584
Nordmann, P., Naas, T., & Poirel, L. (2011). Global spread of carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791-1798. https://doi.org/10.3201/eid1710.110655
Mugnier, P. D., Poirel, L., Pitout, J. D., Nordmann, P. (2010). Carbapenem-resistant Acinetobacter baumannii isolates as a worldwide problem: Molecular and epidemiological analyses. Journal of Antimicrobial Chemotherapy, 65(2), 233-238. https://doi.org/10.1093/jac/dkp428
Zarrilli, R., Pournaras, S., Giannouli, M., & Tsakris, A. (2013). Global evolution of multidrug-resistant Acinetobacter baumannii: Molecular epidemiology and evidence of genetic heterogeneity. Journal of Global Antimicrobial Resistance, 1(2), 80-87. https://doi.org/10.1016/j.jgar.2013.01.005
Bakkeren, E., Diard, M., & Hardt, W. D. (2019). Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 18(8), 479-490. https://doi.org/10.1038/s41579-019-0269-2
Chan, B. K., Abedon, S. T., & Loc-Carrillo, C. (2013). Phage cocktails and the future of phage therapy. Future Microbiology, 8(6), 769-783. https://doi.org/10.2217/fmb.13.47
Published
How to Cite
Issue
Section
Copyright (c) 2024 Rakshan Samynathan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


