AI-Assisted Nanofibers in Neural Tissue Regeneration: Application in Traumatic Brain Injury

Authors

  • Christy Rozene Alexander Bastrop High School
  • Mrs. Jothsna Kethar Gifted Gabber
  • Dr. Kristina Lilova Arizona State University

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8284

Keywords:

AI, Traumatic Brain Injury, Nanomaterials, Central Nervous System, Nanofibers

Abstract

Traumatic Brain injuries (TBI) can pose a significant challenge to neural tissue regeneration in humans, due to the Central Nervous System (CNS) limited ability to regenerate. Traditional therapeutic methods fall short in addressing the challenges associated with TBI. Some common challenges with TBI are inflammation, scar tissue formation, and presence of inhibitor factors. Advances in technology are however beginning to show promising possibilities with respect to nanotechnology that mimic the natural extracellular matrix (ECM), that allow neural cell growth and differentiation. Integration of Artificial Intelligence (AI) with advanced nanotechnology , offers promising possibilities in the enhancement of neural tissue generation. This research paper explores the use of Artificial intelligence (AI) driven approach for the fabrication of nanofibers in the treatment of TBI. Incorporation of AI and machine learning (ML) in design, composition and arrangement of nanofibers can help researchers run multiple iterations, customise nanofiber scaffolds thereby enhancing effectiveness, precision, and personalised treatment options. Machine learning models can further help predict optimal kinetic release of molecules in a controlled manner to promote neural tissue regeneration.  In conclusion, The culmination of AI-driven strategies along with advanced nanomaterials offers a new scope for assisting patients with CNS injuries by restoring their neurological functioning.

Downloads

Download data is not yet available.

References or Bibliography

Anusiya, G., & Jaiganesh, R. (2022). A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydrate Polymer Technologies and Applications, 4, 100262. https://doi.org/10.1016/j.carpta.2022.100262

Aqel, S., Al-Thani, N., Haider, M. Z., Abdelhady, S., Thani, A. a. A., Kobeissy, F., & Shaito, A. A. (2023). Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. Biology, 13(1), 21. https://doi.org/10.3390/biology13010021

Bhattacharya, A., Alam, K., Roy, N. S., Kaur, K., Kaity, S., Ravichandiran, V., & Roy, S. (2023). Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. Journal of Experimental & Clinical Cancer Research, 42(1). https://doi.org/10.1186/s13046-023-02926-4

Doblado, L. R., Martínez-Ramos, C., & Pradas, M. M. (2021). Biomaterials for neural tissue engineering. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.643507

Du, W., Wang, T., Hu, S., Luan, J., Tian, F., Ma, G., & Xue, J. (2023). Engineering of Electrospun Nanofiber Scaffolds for Repairing Brain Injury. Engineered Regeneration, 4(3), 289–303. https://doi.org/10.1016/j.engreg.2023.04.001

Fatal Injury Trends | Injury Center | CDC. (n.d.). https://www.cdc.gov/injury/wisqars/Fatal/trends.html

Guo, Y., Sun, L., Zhong, W., Zhang, N., Zhao, Z., & Tian, W. (2024). Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges. PubMed, 19(3), 663–670. https://doi.org/10.4103/1673-5374.380909

Hwang, D. W., Park, J. B., Sung, D., Park, S., Min, K., Kim, K. W., Choi, Y., Kim, H. Y., Lee, E., Kim, H. S., Jin, M. S., Park, M., Song, Y. S., Park, J., Hyun, J., Hong, S., Cho, S., Hong, B. H., & Lee, D. S. (2019). 3D Graphene-cellulose Nanofiber Hybrid Scaffolds for Cortical Reconstruction in Brain Injuries. 2D Materials, 6(4), 045043. https://doi.org/10.1088/2053-1583/ab3889

Kalantary, S., Jahani, A., Pourbabaki, R., & Beigzadeh, Z. (2019). Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC Advances, 9(43), 24858–24874. https://doi.org/10.1039/c9ra04927d

Kenry, N., & Lim, C. T. (2017). Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

Khedri, M., Beheshtizadeh, N., Rostami, M., Sufali, A., Rezvantalab, S., Dahri, M., Maleki, R., Santos, H. A., & Shahbazi, M. (2022). Artificial Intelligence Deep exploration of influential parameters on physicochemical properties of Curcumin‐Loaded electrospun nanofibers. Advanced nanoBiomed Research, 2(6). https://doi.org/10.1002/anbr.202100143

Li, J., Li, X., Li, X., Liang, Z., Wang, Z., Shahzad, K. A., Xu, M., & Tan, F. (2024). Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05004

Li, T., Tang, Q., Xu, J., Ye, X., Chen, K., Zhong, J., Zhu, J., Lu, S., & Zhu, T. (2023). Apelin-Overexpressing Neural Stem Cells in Conjunction With a Silk Fibroin Nanofiber Scaffold for the Treatment of Traumatic Brain Injury. Stem Cells and Development, 32(17–18), 539–553. https://doi.org/10.1089/scd.2023.0008

Liu, W., Thomopoulos, S., & Xia, Y. (2011). Electrospun Nanofibers for regenerative medicine. Advanced Healthcare Materials, 1(1), 10–25. https://doi.org/10.1002/adhm.201100021

Nagappan, P. G., Chen, H., & Wang, D. (2020). Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research, 7(1). https://doi.org/10.1186/s40779-020-00259-3

Nasouri, K. (2018). Novel estimation of morphological behavior of electrospun nanofibers with artificial intelligence system (AIS). Polymer Testing, 69, 499–507. https://doi.org/10.1016/j.polymertesting.2018.06.001

National Library of Medicine. (n.d.). Traumatic brain injury. TBI | MedlinePlus. https://medlineplus.gov/traumaticbraininjury.html

Novack, T., & Bushnik, T. (n.d.). How a traumatic brain injury impacts daily life | MSKTC. https://msktc.org/tbi/factsheets/understanding-tbi-part-2-brain-injury-impact-individuals-functioning#fsmenu4

Pei, Y., Huang, L., Wang, T., Yao, Q., Sun, Y., Zhang, Y., Yang, X., Zhai, J., Qin, L., Xue, J., Wang, X., Zhang, H., & Yan, J. (2023). Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury. Materials Today Advances, 17, 100349. https://doi.org/10.1016/j.mtadv.2023.100349

Pervez, M. N., Yeo, W. S., Mishu, M. M. R., Talukder, M. E., Roy, H., Islam, M. S., Zhao, Y., Cai, Y., Stylios, G. K., & Naddeo, V. (2023). Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36431-7

Pierre, K., Turetsky, J., Raviprasad, A., Razavi, S. M. S., Mathelier, M., Patel, A., & Lucke-Wold, B. (2024). Machine Learning in Neuroimaging of Traumatic Brain Injury: current landscape, research gaps, and future directions. Trauma Care, 4(1), 31–43. https://doi.org/10.3390/traumacare4010004

Qian, Y., Alhaskawi, A., Dong, Y., Ni, J., Abdalbary, S., & Lu, H. (2024). Transforming medicine: artificial intelligence integration in the peripheral nervous system. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1332048

Rajaei, F., Cheng, S., Williamson, C. A., Wittrup, E., & Najarian, K. (2023). AI-Based Decision Support System for Traumatic Brain Injury: a survey. Diagnostics, 13(9), 1640. https://doi.org/10.3390/diagnostics13091640

Robinson, A. J., Pérez-Nava, A., Ali, S. C., González-Campos, J. B., Holloway, J. L., & Cosgriff-Hernandez, E. M. (2021). Comparative analysis of fiber alignment methods in electrospinning. Matter, 4(3), 821–844. https://doi.org/10.1016/j.matt.2020.12.022

Sang, W., Zhang, R., Shi, X., & Dai, Y. (2023). Advanced metallized nanofibers for biomedical applications. Advanced Science, 10(27). https://doi.org/10.1002/advs.202302044

Traumatic Brain Injury Model Systems National Data and Statistical Center, Craig Hospital, Model Systems Knowledge Translation Center, & National Institute on Disability, Independent Living, and Rehabilitation Research. (2024). National Database: 2023 Profile of People within the Traumatic Brain Injury Model Systems. In TBI Factsheet [Report]. https://msktc.org/sites/default/files/TBIMS-NatDatabase-2023-508.pdf

Traumatic Brain Injury (TBI). (n.d.). National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/traumatic-brain-injury-tbi

Wang, Y., Guo, Q., Wang, W., Wang, Y., Fang, K., Wan, Q., Li, H., & Wu, T. (2022). Potential Use of Bioactive Nanofibrous Dural Substitutes With Controlled Release of IGF-1 for Neuroprotection After Traumatic Brain Injury. Nanoscale, 14(48), 18217–18230. https://doi.org/10.1039/d2nr06081g

Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., . . . Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179

Published

11-30-2024

How to Cite

Alexander, C. R., Kethar, J., & Lilova, D. K. (2024). AI-Assisted Nanofibers in Neural Tissue Regeneration: Application in Traumatic Brain Injury. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8284

Issue

Section

HS Research Projects