AI-Assisted Nanofibers in Neural Tissue Regeneration: Application in Traumatic Brain Injury
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8284Keywords:
AI, Traumatic Brain Injury, Nanomaterials, Central Nervous System, NanofibersAbstract
Traumatic Brain injuries (TBI) can pose a significant challenge to neural tissue regeneration in humans, due to the Central Nervous System (CNS) limited ability to regenerate. Traditional therapeutic methods fall short in addressing the challenges associated with TBI. Some common challenges with TBI are inflammation, scar tissue formation, and presence of inhibitor factors. Advances in technology are however beginning to show promising possibilities with respect to nanotechnology that mimic the natural extracellular matrix (ECM), that allow neural cell growth and differentiation. Integration of Artificial Intelligence (AI) with advanced nanotechnology , offers promising possibilities in the enhancement of neural tissue generation. This research paper explores the use of Artificial intelligence (AI) driven approach for the fabrication of nanofibers in the treatment of TBI. Incorporation of AI and machine learning (ML) in design, composition and arrangement of nanofibers can help researchers run multiple iterations, customise nanofiber scaffolds thereby enhancing effectiveness, precision, and personalised treatment options. Machine learning models can further help predict optimal kinetic release of molecules in a controlled manner to promote neural tissue regeneration. In conclusion, The culmination of AI-driven strategies along with advanced nanomaterials offers a new scope for assisting patients with CNS injuries by restoring their neurological functioning.
Downloads
References or Bibliography
Anusiya, G., & Jaiganesh, R. (2022). A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydrate Polymer Technologies and Applications, 4, 100262. https://doi.org/10.1016/j.carpta.2022.100262
Aqel, S., Al-Thani, N., Haider, M. Z., Abdelhady, S., Thani, A. a. A., Kobeissy, F., & Shaito, A. A. (2023). Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. Biology, 13(1), 21. https://doi.org/10.3390/biology13010021
Bhattacharya, A., Alam, K., Roy, N. S., Kaur, K., Kaity, S., Ravichandiran, V., & Roy, S. (2023). Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. Journal of Experimental & Clinical Cancer Research, 42(1). https://doi.org/10.1186/s13046-023-02926-4
Doblado, L. R., Martínez-Ramos, C., & Pradas, M. M. (2021). Biomaterials for neural tissue engineering. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.643507
Du, W., Wang, T., Hu, S., Luan, J., Tian, F., Ma, G., & Xue, J. (2023). Engineering of Electrospun Nanofiber Scaffolds for Repairing Brain Injury. Engineered Regeneration, 4(3), 289–303. https://doi.org/10.1016/j.engreg.2023.04.001
Fatal Injury Trends | Injury Center | CDC. (n.d.). https://www.cdc.gov/injury/wisqars/Fatal/trends.html
Guo, Y., Sun, L., Zhong, W., Zhang, N., Zhao, Z., & Tian, W. (2024). Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges. PubMed, 19(3), 663–670. https://doi.org/10.4103/1673-5374.380909
Hwang, D. W., Park, J. B., Sung, D., Park, S., Min, K., Kim, K. W., Choi, Y., Kim, H. Y., Lee, E., Kim, H. S., Jin, M. S., Park, M., Song, Y. S., Park, J., Hyun, J., Hong, S., Cho, S., Hong, B. H., & Lee, D. S. (2019). 3D Graphene-cellulose Nanofiber Hybrid Scaffolds for Cortical Reconstruction in Brain Injuries. 2D Materials, 6(4), 045043. https://doi.org/10.1088/2053-1583/ab3889
Kalantary, S., Jahani, A., Pourbabaki, R., & Beigzadeh, Z. (2019). Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC Advances, 9(43), 24858–24874. https://doi.org/10.1039/c9ra04927d
Kenry, N., & Lim, C. T. (2017). Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002
Khedri, M., Beheshtizadeh, N., Rostami, M., Sufali, A., Rezvantalab, S., Dahri, M., Maleki, R., Santos, H. A., & Shahbazi, M. (2022). Artificial Intelligence Deep exploration of influential parameters on physicochemical properties of Curcumin‐Loaded electrospun nanofibers. Advanced nanoBiomed Research, 2(6). https://doi.org/10.1002/anbr.202100143
Li, J., Li, X., Li, X., Liang, Z., Wang, Z., Shahzad, K. A., Xu, M., & Tan, F. (2024). Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05004
Li, T., Tang, Q., Xu, J., Ye, X., Chen, K., Zhong, J., Zhu, J., Lu, S., & Zhu, T. (2023). Apelin-Overexpressing Neural Stem Cells in Conjunction With a Silk Fibroin Nanofiber Scaffold for the Treatment of Traumatic Brain Injury. Stem Cells and Development, 32(17–18), 539–553. https://doi.org/10.1089/scd.2023.0008
Liu, W., Thomopoulos, S., & Xia, Y. (2011). Electrospun Nanofibers for regenerative medicine. Advanced Healthcare Materials, 1(1), 10–25. https://doi.org/10.1002/adhm.201100021
Nagappan, P. G., Chen, H., & Wang, D. (2020). Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research, 7(1). https://doi.org/10.1186/s40779-020-00259-3
Nasouri, K. (2018). Novel estimation of morphological behavior of electrospun nanofibers with artificial intelligence system (AIS). Polymer Testing, 69, 499–507. https://doi.org/10.1016/j.polymertesting.2018.06.001
National Library of Medicine. (n.d.). Traumatic brain injury. TBI | MedlinePlus. https://medlineplus.gov/traumaticbraininjury.html
Novack, T., & Bushnik, T. (n.d.). How a traumatic brain injury impacts daily life | MSKTC. https://msktc.org/tbi/factsheets/understanding-tbi-part-2-brain-injury-impact-individuals-functioning#fsmenu4
Pei, Y., Huang, L., Wang, T., Yao, Q., Sun, Y., Zhang, Y., Yang, X., Zhai, J., Qin, L., Xue, J., Wang, X., Zhang, H., & Yan, J. (2023). Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury. Materials Today Advances, 17, 100349. https://doi.org/10.1016/j.mtadv.2023.100349
Pervez, M. N., Yeo, W. S., Mishu, M. M. R., Talukder, M. E., Roy, H., Islam, M. S., Zhao, Y., Cai, Y., Stylios, G. K., & Naddeo, V. (2023). Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36431-7
Pierre, K., Turetsky, J., Raviprasad, A., Razavi, S. M. S., Mathelier, M., Patel, A., & Lucke-Wold, B. (2024). Machine Learning in Neuroimaging of Traumatic Brain Injury: current landscape, research gaps, and future directions. Trauma Care, 4(1), 31–43. https://doi.org/10.3390/traumacare4010004
Qian, Y., Alhaskawi, A., Dong, Y., Ni, J., Abdalbary, S., & Lu, H. (2024). Transforming medicine: artificial intelligence integration in the peripheral nervous system. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1332048
Rajaei, F., Cheng, S., Williamson, C. A., Wittrup, E., & Najarian, K. (2023). AI-Based Decision Support System for Traumatic Brain Injury: a survey. Diagnostics, 13(9), 1640. https://doi.org/10.3390/diagnostics13091640
Robinson, A. J., Pérez-Nava, A., Ali, S. C., González-Campos, J. B., Holloway, J. L., & Cosgriff-Hernandez, E. M. (2021). Comparative analysis of fiber alignment methods in electrospinning. Matter, 4(3), 821–844. https://doi.org/10.1016/j.matt.2020.12.022
Sang, W., Zhang, R., Shi, X., & Dai, Y. (2023). Advanced metallized nanofibers for biomedical applications. Advanced Science, 10(27). https://doi.org/10.1002/advs.202302044
Traumatic Brain Injury Model Systems National Data and Statistical Center, Craig Hospital, Model Systems Knowledge Translation Center, & National Institute on Disability, Independent Living, and Rehabilitation Research. (2024). National Database: 2023 Profile of People within the Traumatic Brain Injury Model Systems. In TBI Factsheet [Report]. https://msktc.org/sites/default/files/TBIMS-NatDatabase-2023-508.pdf
Traumatic Brain Injury (TBI). (n.d.). National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/traumatic-brain-injury-tbi
Wang, Y., Guo, Q., Wang, W., Wang, Y., Fang, K., Wan, Q., Li, H., & Wu, T. (2022). Potential Use of Bioactive Nanofibrous Dural Substitutes With Controlled Release of IGF-1 for Neuroprotection After Traumatic Brain Injury. Nanoscale, 14(48), 18217–18230. https://doi.org/10.1039/d2nr06081g
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., . . . Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179
Published
How to Cite
Issue
Section
Copyright (c) 2024 Christy Rozene Alexander; Mrs. Jothsna Kethar, Dr. Kristina Lilova

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


