An Exploration of the Implications and Possible Applications of Generative AI in Mental Healthcare
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8275Keywords:
Generative Artificial Intelligence, Psychology, Mental Healthcare, Artificial IntelligenceAbstract
The past few years have seen significant growth in the capabilities of Generative Artificial Intelligence (GAI), and it has shown incredible potential to impact the field of mental healthcare. GAI encompasses a variety of AI architectures, all of which can process information and create output at tremendous speeds, showing promise in making mental healthcare more efficient and revolutionizing psychological research and patient care. In this work, we analyze the recent advancements made within the GAI space, consider the possible applications that GAI could have in the research and clinical environments of mental healthcare, and acknowledge the potential limitations of GAI when considering pathways to integration. Ultimately, we recognize the many benefits that GAI could create in the field of mental healthcare in improving patient outcomes, reducing workload for medical professionals and researchers, and reducing financial and resource consumption while also asserting that the implementation of GAI must be done with care to prevent harm and detriment to patients.
Downloads
References or Bibliography
Abbasian, M., Khatibi, E., Azimi, I. et al. Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative AI. npj Digit. Med. 7, 82 (2024). https://doi.org/10.1038/s41746-024-01074-z
Angell, B., & Bolden, G. B. (2015). Justifying medication decisions in mental health care: Psychiatrists' accounts for treatment recommendations. Social science & medicine (1982), 138, 44–56. https://doi.org/10.1016/j.socscimed.2015.04.029
Arvanitis, L., Brewster, J., & Sadeghi, M. (2024, July 15). NewsGuard’s misinformation monitor: GPT-4 produces more misinformation than predecessor. NewsGuard. https://www.newsguardtech.com/misinformation-monitor/march-2023/
Bandi, A., Adapa, P. V., & Kuchi, Y. E. (2023). The power of Generative AI: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet, 15(8), 260. https://doi.org/10.3390/fi15080260
Barak-Corren, Y., Wolf, R., Rozenblum, R., Creedon, J. K., Lipsett, S. C., Lyons, T. W., Michelson, K. A., Miller, K. A., Shapiro, D. J., Reis, B. Y., & Fine, A. M. (2024). Harnessing the power of Generative AI for clinical summaries: Perspectives from emergency physicians. Annals of Emergency Medicine, 84(2), 128–138. https://doi.org/10.1016/j.annemergmed.2024.01.039
Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., & Oladunni, T. (2024). Advancements in generative AI: A comprehensive review of gans, GPT, autoencoders, diffusion model, and Transformers. IEEE Access, 12, 69812–69837. https://doi.org/10.1109/access.2024.3397775
Blease, C., Torous, J., McMillan, B., Hägglund, M., & Mandl, K. D. (2024). Generative language models and open notes: Exploring the promise and limitations. JMIR Medical Education, 10. https://doi.org/10.2196/51183
Chandra, S., Prakash, P.K.S., Samanta, S. et al. ClinicalGAN: powering patient monitoring in clinical trials with patient digital twins. Sci Rep 14, 12236 (2024). https://doi.org/10.1038/s41598-024-62567-
Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in medical practice: In-depth exploration of privacy and security challenges. Journal of Medical Internet Research, 26. https://doi.org/10.2196/53008
Christensen, M., Vukadinovic, M., Yuan, N. et al. Vision–language foundation model for echocardiogram interpretation. Nat Med 30, 1481–1488 (2024). https://doi.org/10.1038/s41591-024-02959-y
Denecke, K., Vaaheesan, S., & Arulnathan, A. (2021). A mental health chatbot for regulating emotions (sermo) - concept and usability test. IEEE Transactions on Emerging Topics in Computing, 9(3), 1170–1182. https://doi.org/10.1109/tetc.2020.2974478
Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Steinhardt, J. & Madry, A.. (2020). Identifying Statistical Bias in Dataset Replication. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:2922-2932 Available from https://proceedings.mlr.press/v119/engstrom20a.html.
Feuerriegel, S., Hartmann, J., Janiesch, C. et al. Generative AI. Bus Inf Syst Eng 66, 111–126 (2024). https://doi.org/10.1007/s12599-023-00834-7
Garg, M., & Patil, H. S. (2021). Comparative Study On AI in Mental Health and Wellbeing-Current Applications and Trends. International Research Journal Of Engineering And Technology.
Gemini. Google DeepMind. (2024, May 14). https://deepmind.google/technologies/gemini/
Gold, C., Mössler, K., Grocke, D., Heldal, T. O., Tjemsland, L., Aarre, T., Aarø, L. E., Rittmannsberger, H., Stige, B., Assmus, J., & Rolvsjord, R. (2013). Individual music therapy for mental health care clients with low therapy motivation: Multicentre Randomised controlled trial. Psychotherapy and Psychosomatics, 82(5), 319–331. https://doi.org/10.1159/000348452
Government of Canada. (2006). The human face of mental health and mental illness in Canada, 2006. Public Health Agency of Canada.
Haber, Y., Levkovich, I., Hadar-Shoval, D., & Elyoseph, Z. (2024). The artificial third: A broad view of the effects of introducing Generative Artificial Intelligence on psychotherapy. JMIR Mental Health, 11. https://doi.org/10.2196/54781
Harrer, S. (2023). Attention is not all you need: The complicated case of ethically using large language models in healthcare and medicine. eBioMedicine, 90, 104512. https://doi.org/10.1016/j.ebiom.2023.104512
Hassija, V., Chamola, V., Mahapatra, A. et al. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn Comput 16, 45–74 (2024). https://doi.org/10.1007/s12559-023-10179-8
Hoffmann, J. A., Attridge, M. M., Carroll, M. S., Simon, N.-J. E., Beck, A. F., & Alpern, E. R. (2023). Association of Youth Suicides and county-level mental health professional shortage areas in the US. JAMA Pediatrics, 177(1), 71. https://doi.org/10.1001/jamapediatrics.2022.4419
Hou, Y. (2022). Ai Music therapist: A study on generating specific therapeutic music based on deep generative adversarial network approach. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). https://doi.org/10.1109/icetci55101.2022.9832398
Huhn, M., Tardy, M., Spineli, L. M., Kissling, W., Förstl, H., Pitschel-Walz, G., Leucht, C., Samara, M., Dold, M., Davis, J. M., & Leucht, S. (2014). Efficacy of pharmacotherapy and psychotherapy for adult psychiatric disorders. JAMA Psychiatry, 71(6), 706. https://doi.org/10.1001/jamapsychiatry.2014.112
Jenifa, G., K, Padmapriya., P, S., Karthika, K., Pandi, V. S., & Arumugam, D. (2024). An effective personality recognition model design using Generative Artificial Intelligence Based Learning principles. 2024 International Conference on Computing and Data Science (ICCDS). https://doi.org/10.1109/iccds60734.2024.10560368
Joseph, A.P., Babu, A. The unseen dilemma of AI in mental healthcare. AI & Soc (2024). https://doi.org/10.1007/s00146-024-01937-9
Kalman, J. L., Burkhardt, G., Samochowiec, J., Gebhard, C., Dom, G., John, M., Kilic, O., Kurimay, T., Lien, L., Schouler-Ocak, M., Vidal, D. P., Wiser, J., Gaebel, W., Volpe, U., & Falkai, P. (2023). Digitalising mental health care: Practical recommendations from the European Psychiatric Association. European psychiatry : the journal of the Association of European Psychiatrists, 67(1), e4. https://doi.org/10.1192/j.eurpsy.2023.2466
Kearney, A., Rosala- Hallas, A., Bacon, N., Daykin, A., Shaw, A. R., Lane, A. J., Blazeby, J. M., Clarke, M., Williamson, P. R., & Gamble, C. (2018). Reducing attrition within clinical trials: The communication of retention and withdrawal within patient information leaflets. PLOS ONE, 13(10). https://doi.org/10.1371/journal.pone.0204886
King, D. (2023). ChatGPT Not Yet Ready for Clinical Practice. Psychiatric News, 58(07). https://doi.org/10.1176/appi.pn.2023.07.7.56
Li, Y., Gao, C., Song, X., Wang, X., Xu, Y., & Han, S. (2023). DrugGPT: A GPT-based strategy for designing potential ligands targeting specific proteins. bioRxiv, 2023-06.
Liu, R., Rizzo, S., Whipple, S. et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 592, 629–633 (2021). https://doi.org/10.1038/s41586-021-03430-5
Louie, R., Coenen, A., Huang, C. Z., Terry, M., & Cai, C. J. (2020). Novice-ai music co-creation via AI-steering tools for deep generative models. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376739
Marr, B. (2024, July 2). How generative AI is Revolutionizing Customer Service. Forbes. https://www.forbes.com/sites/bernardmarr/2024/01/26/how-generative-ai-is-revolutionizing-customer-service/
Microsoft copilot: Your everyday ai companion. Microsoft Copilot: Your everyday AI companion. (2024). https://copilot.microsoft.com/
Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science (New York, N.Y.), 381(6654), 187–192. https://doi.org/10.1126/science.adh2586
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
OpenAI API. OpenAI. (2024). https://platform.openai.com/
Parnas, S., & Isobel, S. (2017). Navigating the social synapse: The Neurobiology of Bedside Manner. Australasian Psychiatry, 26(1), 70–72. https://doi.org/10.1177/1039856217726224
Pfob, A., & Sidey-Gibbons, C. (2022). Systematic bias in medical algorithms: To include or not include discriminatory demographic information? JCO Clinical Cancer Informatics, (6). https://doi.org/10.1200/cci.21.00146
Ren, F., Aliper, A., Chen, J. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02143-0
Rothman, J. (2024, February 16). When A.I. can make a movie, what does “video” even mean? The New Yorker. https://www.newyorker.com/science/annals-of-artificial-intelligence/when-ai-can-make-a-movie-what-does-video-even-mean
Saadatinia, M., & Salimi-Badr, A. (2024). An explainable deep learning-based method for schizophrenia diagnosis using generative data-augmentation. IEEE Access, 12, 98379–98392. https://doi.org/10.1109/access.2024.3428847
Sardesai, N., Russo, P., Martin, J., & Sardesai, A. (2024). Utilizing generative conversational artificial intelligence to create simulated patient encounters: A pilot study for anaesthesia training. Postgraduate Medical Journal, 100(1182), 237–241. https://doi.org/10.1093/postmj/qgad137
Sertkaya, A., Beleche, T., Jessup, A., & Sommers, B. D. (2024). Costs of drug development and research and development intensity in the US, 2000-2018. JAMA Network Open, 7(6). https://doi.org/10.1001/jamanetworkopen.2024.15445
Sezgin, E. (2023). Artificial Intelligence in Healthcare: Complementing, not replacing, doctors and healthcare providers. DIGITAL HEALTH, 9. https://doi.org/10.1177/20552076231186520
Sezgin, E., McKay, I. Behavioral health and generative AI: a perspective on future of therapies and patient care. npj Mental Health Res 3, 25 (2024). https://doi.org/10.1038/s44184-024-00067-w
Shi, Y. (2023). Study on Security Risks and legal regulations of Generative Artificial Intelligence. Science of Law Journal, 2(11), 17–23. https://doi.org/10.23977/law.2023.021104
Skalic, M., Sabbadin, D., Sattarov, B., Sciabola, S., & De Fabritiis, G. (2019). From target to drug: Generative Modeling for the multimodal structure-based ligand design. Molecular Pharmaceutics, 16(10), 4282–4291. https://doi.org/10.1021/acs.molpharmaceut.9b00634
Sora. OpenAI. (2024b). https://openai.com/sora
Stewart, D. J., Batist, G., Kantarjian, H. M., Bradford, J.-P., Schiller, J. H., & Kurzrock, R. (2015). The urgent need for clinical research reform to permit faster, less expensive access to new therapies for lethal diseases. Clinical Cancer Research, 21(20), 4561–4568. https://doi.org/10.1158/1078-0432.ccr-14-3246
Swanson, K., Liu, G., Catacutan, D.B. et al. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat Mach Intell 6, 338–353 (2024). https://doi.org/10.1038/s42256-024-00809-7
Teng, M. (2023, December 2). World’s first AI generative bispecific T cell engager with picomolar affinity. Etcembly. https://www.etcembly.com/post/etcembly-reveals-world-s-first-ai-generative-bispecific-t-cell-engager-with-picomolar-affinity
Tjiptomongsoguno, A.R.W., Chen, A., Sanyoto, H.M., Irwansyah, E., Kanigoro, B. (2020). Medical Chatbot Techniques: A Review. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol 1294. Springer, Cham. https://doi.org/10.1007/978-3-030-63322-6_28
Tyson, A. (2023, February 22). 60% of Americans would be uncomfortable with provider relying on AI in their own health care. Pew Research Center. https://www.pewresearch.org/science/2023/02/22/60-of-americans-would-be-uncomfortable-with-provider-relying-on-ai-in-their-own-health-care/
Ullman, K., McKenzie, L., Bart, B., Park, G., MacDonald, R., Linskens, E., & Wilt, T. J. (2021). The effect of medical scribes in emergency departments: A systematic review. The Journal of Emergency Medicine, 61(1), 19–28. https://doi.org/10.1016/j.jemermed.2021.02.024
Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and conversational agents in Mental Health: A review of the Psychiatric Landscape. The Canadian Journal of Psychiatry, 64(7), 456–464. https://doi.org/10.1177/0706743719828977
Vial, T., & Almon, A. (2023). Artificial Intelligence in mental health therapy for children and adolescents. JAMA Pediatrics, 177(12), 1251. https://doi.org/10.1001/jamapediatrics.2023.4212
Wang, Z., Xiao, C., & Sun, J. (2023). Spot: Sequential predictive modeling of clinical trial outcome with Meta-learning. Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. https://doi.org/10.1145/3584371.3613001
Wright, S. N., & Anticevic, A. (2024). Generative AI for precision neuroimaging biomarker development in psychiatry. Psychiatry Research, 339, 115955. https://doi.org/10.1016/j.psychres.2024.115955
Yadav, A. B. (2024). An Analysis on the Use of Image Design with Generative AI Technologies. International Journal of Trend in Scientific Research and Development, 8(1), 596–599. https://www.researchgate.net/publication/378291870_An_Analysis_on_the_Use_of_Image_Design_with_Generative_AI_Technologies
Yang, M., & Mori, H. (2024). Automated diagnostics and its advantages of AI in mental health. Lecture Notes in Computer Science, 289–299. https://doi.org/10.1007/978-3-031-60107-1_21
Zhang, K., Riegler, G., Snavely, N., & Koltun, V. (2020). Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Hans Manish; Nicholas Traugott

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


