From Cup to Cure: The Impact of Matcha Tea on Alzheimer’s Disease

Authors

  • Adhiti Parupalli Ellington High School
  • Dr. Jobin Varkey University of Southern California
  • Virgel Torremocha University of Southeastern Philippines
  • Jothsna Kethar Gifted Gabber

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8262

Keywords:

Alzheimer's Disease, Matcha Tea, EGCG, Caffeine, L-theanine, Rutin, Quercetin

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by neurofibrillary tangles, amyloid beta aggregation, and neuronal dysfunction and loss. Research into various therapeutic approaches to prevent AD onset is a significant field of study as no definitive cure currently exists. Globally, studies recognize herbal therapies for their accessibility, affordability, and health-promoting properties against neurodegenerative diseases. Matcha tea in particular, from the Camellia sinensis plant, comprises of components such as epigallocatechin-3-gallate (EGCG), caffeine, L-theanine, rutin, and quercetin which possess several anti-AD health-promoting properties. However, further research into the effects of individual components in matcha towards specific diseases is valid and required. Therefore, this study synthesized a comprehensive assessment of the specific AD-associated factors that matcha tea exhibited beneficial effects towards. The research methodology consisted of a secondary review and analysis of peer-reviewed research articles and primary sources. Epidemiological studies were utilized to investigate the various mechanisms that individual components in matcha employed against AD pathology and hallmarks. The research was compiled into a table demonstrating which components in matcha were associated with alleviating certain AD-associated factors. Finally, the practical applications of matcha and future considerations in the field were discussed. The results indicated that matcha’s components beneficially affected numerous AD hallmarks and employed various mechanisms to mitigate AD symptoms. Based on the results, it was concluded that matcha possesses several anti-AD health-promoting properties that may supplement and amplify current prevention strategies. Therefore, this study recommends matcha consumption as a preventative measure against AD.

Downloads

Download data is not yet available.

Author Biography

Dr. Jobin Varkey, University of Southern California

Assistant Professor

References or Bibliography

Alzheimer's Association. (2024). 2024 Alzheimer’s Disease Facts and Figures. Alzheimer’s Association.

https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf

Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s disease: Past, present and

future. Neuropharmacology, 76, 27–50. https://doi.org/10.1016/j.neuropharm.2013.07.004

Anas Sohail, A., Ortiz, F., Varghese, T., Fabara, S. P., Batth, A. S., Sandesara, D. P., Sabir, A., Khurana, M., Datta,

S., & Patel, U. K. (2021). The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic

Review. Curēus (Palo Alto, CA), 13(12), e20828–e20828. https://doi.org/10.7759/cureus.20828

Arendash, G. W., Schleif, W., Rezai-Zadeh, K., Jackson, E. K., Zacharia, L. C., Cracchiolo, J. R., Shippy,

D., & Tan, J. (2006). Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain

β-amyloid production. Neuroscience, 142(4), 941–952. https://doi.org/10.1016/j.neuroscience.2006.07.021

Baba, Y., Inagaki, S., Nakagawa, S., Kobayashi, M., Kaneko, T., & Takihara, T. (2021). Effects of Daily

Matcha and Caffeine Intake on Mild Acute Psychological Stress-Related Cognitive Function in

Middle-Aged and Older Adults: A Randomized Placebo-Controlled Study. Nutrients, 13(5), 1700-.

https://doi.org/10.3390/nu13051700

Bhat, R. A., Hakeem, K. R., & Dervash, M. A. (2021). Phytomedicine : a treasure of pharmacologically

active products from plants. Academic Press.

Camfield, D. A., Stough, C., Farrimond, J., & Scholey, A. B. (2014). Acute effects of tea constituents

L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and

meta-analysis. Nutrition reviews, 72(8), 507–522. https://doi.org/10.1111/nure.12120

Carman, A. J., Dacks, P. A., Lane, R. F., Shineman, D. W., & Fillit, H. M. (2014). Current evidence for the

use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. The Journal of

Nutrition, Health & Aging, 18(4), 383–392. https://doi.org/10.1007/s12603-014-0021-7

Centers for Disease Control and Prevention. (2020). What is Alzheimer’s disease? Www.cdc.gov; CDC.

https://www.cdc.gov/aging/aginginfo/alzheimers.htm#:~:text=Alzheimer

Chen, X., Guo, C., & Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural regeneration

research, 7(5), 376–385. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009

Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease.

Human Molecular Genetics, 19(R1), R12–R20. https://doi.org/10.1093/hmg/ddq160

Currais, A., Kato, K., Canuet, L., Ishii, R., Tanaka, T., Takeda, M., & Soriano, S. (2011). Caffeine

modulates tau phosphorylation and affects Akt signaling in postmitotic neurons. Journal of molecular

neuroscience : MN, 43(3), 326–332. https://doi.org/10.1007/s12031-010-9444-8

Drummond, E., Pires, G., MacMurray, C., Askenazi, M., Nayak, S., Bourdon, M., Safar, J., Ueberheide, B., &

Wisniewski, T. (2020). Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain : a journal of neurology, 143(9), 2803–2817. https://doi.org/10.1093/brain/awaa223

Gabarró-Solanas, R., & Urbán, N. (2023). It takes two to untangle: Combined stimulation of adult

neurogenesis reverts AD symptoms. Cell Stem Cell, 30(4), 333–334. https://doi.org/10.1016/j.stem.2023.03.012

Gardener, S. L., Rainey-Smith, S. R., Villemagne, V. L., Fripp, J., Doré, V., Bourgeat, P., Taddei, K.,

Fowler, C., Masters, C. L., Maruff, P., Rowe, C. C., Ames, D., & Martins, R. N. (2021). Higher Coffee

Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation

Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study. Frontiers in Aging

Neuroscience, 13, 744872–744872. https://doi.org/10.3389/fnagi.2021.744872

Geiser, R. J., Chastain, S. E., & Moss, M. A. (2017). Regulation of Bace1 Mrna Expression in Alzheimer’s

Disease by Green Tea Catechins and Black Tea Theaflavins. Biophysical Journal, 112(3), 362a–362a.

https://doi.org/10.1016/j.bpj.2016.11.1965

Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P.,

Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2022). Global estimates

on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s & Dementia: The Journal

of the Alzheimer’s Association, 19(2), 658–670. https://doi.org/10.1002/alz.12694

Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P.,

Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A.

(2021). The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 26(10), 5481–5503.

https://doi.org/10.1038/s41380-021-01249-0

Haque, A. M., Hashimoto, M., Katakura, M., Hara, Y., & Shido, O. (2008). Green tea catechins prevent cognitive

deficits caused by Aβ₁₋₄₀ in rats. The Journal of Nutritional Biochemistry, 19(9), 619–626. https://doi.org/10.1016/j.jnutbio.2007.08.008

Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science

(American Association for the Advancement of Science), 256(5054), 184–185.

https://doi.org/10.1126/science.1566067

Ionescu-Tucker, A., & Cotman, C. W. (2021). Emerging roles of oxidative stress in brain aging and

Alzheimer’s disease. Neurobiology of Aging, 107, 86–95.

https://doi.org/10.1016/j.neurobiolaging.2021.07.014

Iwai, R., Ishii, T., Fukushima, Y., Okamoto, T., Ichihashi, M., Sasaki, Y., Mizuatni, K.I., (2021). Matcha and

its components control angiogenic potential. J. Nutr. Sci. Vitaminol. 67, 118–125.

https://doi.org/10.3177/jnsv.67.118.

Jakubczyk, K., Kochman, J., Kwiatkowska, A., Kałdunska, J., Dec, K., Kawczuga, D., & Janda, K. (2020).

Antioxidant properties and nutritional composition of matcha green tea. Foods, 9(4), 483-.

https://doi.org/10.3390/foods9040483

Javed, H., Khan, M. M., Ahmad, A., Vaibhav, K., Ahmad, M. E., Khan, A., Ashafaq, M., Islam, F.,

Siddiqui, M. S., & Safhi, M. M. (2012). Rutin prevents cognitive impairments by ameliorating oxidative

stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience, 210,

–352. https://doi.org/10.1016/j.neuroscience.2012.02.046

Jiang, N., Ma, J., Wang, Q., Xu, Y., & Wei, B. (2023). Tea intake or consumption and the risk of dementia:

a meta-analysis of prospective cohort studies. PeerJ, 11, e15688. https://doi.org/10.7717/peerj.15688

Kakuda, T., Hinoi, E., Abe, A., Nozawa, A., Ogura, M., & Yoneda, Y. (2008). Theanine, an ingredient of

green tea, inhibits [3H]glutamine transport in neurons and astroglia in rat brain. Journal of Neuroscience

Research, 86(8), 1846–1856. https://doi.org/10.1002/jnr.21637

Kakutani, S., Watanabe, H., & Murayama, N. (2019). Green Tea Intake and Risks for Dementia,

Alzheimer's Disease, Mild Cognitive Impairment, and Cognitive Impairment: A Systematic Review.

Nutrients, 11(5), 1165. https://doi.org/10.3390/nu11051165

Kamaljeet, Singh, S., Gupta, G. D., & Aran, K. R. (2024). Emerging role of antioxidants in Alzheimer’s

disease: Insight into physiological, pathological mechanisms and management. Pharmaceutical Science

Advances, 2, 100021-. https://doi.org/10.1016/j.pscia.2023.100021

Khan, A., Shal, B., Khan, A., Ali, H., & Khan, S. (2023). The potential role of herbal medicine and

nutraceutical in neuroinflammatory disorders: A mechanistic insight via multisignaling cascades. In

Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders (pp. 501–524).

https://doi.org/10.1016/B978-0-323-90052-2.00012-3

Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2019). Neuroprotective Effects of

Quercetin in Alzheimer’s Disease. Biomolecules (Basel, Switzerland), 10(1), 59-.

https://doi.org/10.3390/biom10010059

Khan, N., & Mukhtar, H. (2013). Tea and health: studies in humans. Current pharmaceutical design, 19(34),

–6147. https://doi.org/10.2174/1381612811319340008

Kim, J. M., Lee, U., Kang, J. Y., Park, S. K., Kim, J. C., & Heo, H. J. (2020). Matcha Improves Metabolic

Imbalance-Induced Cognitive Dysfunction. Oxidative medicine and cellular longevity, 2020, 8882763.

https://doi.org/10.1155/2020/8882763

Kim, T. I., Lee, Y. K., Park, S. G., Choi, I. S., Ban, J. O., Park, H. K., Nam, S. Y., Yun, Y. W., Han, S. B.,

Oh, K. W., & Hong, J. T. (2009). l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced

cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38

kinase and NF-kappaB pathways. Free radical biology & medicine, 47(11), 1601–1610.

https://doi.org/10.1016/j.freeradbiomed.2009.09.008

Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K (2021). Health Benefits and Chemical Composition of

Matcha Green Tea: A Review. Molecules. 26(1):85. https://doi.org/10.3390/molecules26010085

Mills, E., Cooper, C., Seely, D., & Kanfer, I. (2005). African herbal medicines in the treatment of HIV:

Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutrition journal, 4, 19.

https://doi.org/10.1186/1475-2891-4-19

Murman D. L. (2015). The Impact of Age on Cognition. Seminars in Hearing, 36(3), 111–121.

https://doi.org/10.1055/s-0035-1555115

Nagle, D. G., Ferreira, D., & Zhou, Y.-D. (2006). Epigallocatechin-3-gallate (EGCG): Chemical and

biomedical perspectives. Phytochemistry (Oxford), 67(17), 1849–1855.

https://doi.org/10.1016/j.phytochem.2006.06.020

National Institute on Aging. (2023). Alzheimer’s Disease fact sheet. National Institute on Aging.

https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet

Nishihira, J., Nishimura, M., Kurimoto, M., Kagami-Katsuyama, H., Hattori, H., Nakagawa, T., Muro, T.,

& Kobori, M. (2021). The effect of 24-week continuous intake of quercetin-rich onion on age-related

cognitive decline in healthy elderly people: a randomized, double-blind, placebo-controlled, parallel-group

comparative clinical trial. Journal of clinical biochemistry and nutrition, 69(2), 203–215.

https://doi.org/10.3164/jcbn.21-17

Ozben, T., & Ozben, S. (2019). Neuro-inflammation and anti-inflammatory treatment options for

Alzheimer’s disease. Clinical Biochemistry, 72, 87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001

‌Pan, R.-Y., Ma, J., Kong, X.-X., Wang, X.-F., Li, S.-S., Qi, X.-L., Yan, Y.-H., Cheng, J., Liu, Q., Jin, W

Tan, C.-H., & Yuan, Z. (2019). Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing

microglial amyloid-β clearance. Science Advances, 5(2), eaau6328–eaau6328.

https://doi.org/10.1126/SCIADV.AAU6328

Polito, C. A., Cai, Z.-Y., Shi, Y.-L., Li, X.-M., Yang, R., Shi, M., Li, Q.-S., Ma, S.-C., Xiang, L.-P., Wang,

K.-R., Ye, J.-H., Lu, J.-L., Zheng, X.-Q., & Liang, Y.-R. (2018). Association of Tea Consumption with Risk

of Alzheimer’s Disease and Anti-Beta-Amyloid Effects of Tea. Nutrients, 10(5), 655-.

https://doi.org/10.3390/nu10050655

Prasanthi, J. R., Dasari, B., Marwarha, G., Larson, T., Chen, X., Geiger, J. D., & Ghribi, O. (2010).

Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus

induced by cholesterol-enriched diet. Free radical biology & medicine, 49(7), 1212–1220.

https://doi.org/10.1016/j.freeradbiomed.2010.07.007

Ribarič, S. (2018). Peptides as Potential Therapeutics for Alzheimer’s Disease. Molecules (Basel,

Switzerland), 23(2), 283-. https://doi.org/10.3390/molecules23020283

Ruggiero, M., Calvello, R., Porro, C., Messina, G., Cianciulli, A., & Panaro, M. A. (2022).

Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation?

International Journal of Molecular Sciences, 23(21), 12958-. https://doi.org/10.3390/ijms232112958

Sabarathinam, S. (2024). Unraveling the therapeutic potential of quercetin and quercetin-3-O-glucuronide

in Alzheimer’s disease through network pharmacology, molecular docking, and dynamic simulations.

Scientific Reports, 14(1), 14852–14. https://doi.org/10.1038/s41598-024-61779-9

Saieed, P., Reza, R. M., Abbas, D., Seyyedvali, R., & Aliasghar, H. (2006). Inhibitory Effects of Ruta

graveolens L. Extract on Guinea Pig Liver Aldehyde Oxidase. Chemical & Pharmaceutical Bulletin, 54(1),

–13. https://doi.org/10.1248/cpb.54.9

Sakurai, K., Shen, C., Ezaki, Y., Inamura, N., Fukushima, Y., Masuoka, N., & Hisatsune, T. (2020). Effects

of Matcha Green Tea Powder on Cognitive Functions of Community-Dwelling Elderly Individuals.

Nutrients, 12(12), 3639. https://doi.org/10.3390/nu12123639

Salehi, A., Ashford, J. W., & Mufson, E. J. (2016). The Link between Alzheimer's Disease and Down

Syndrome. A Historical Perspective. Current Alzheimer research, 13(1), 2–6.

https://doi.org/10.2174/1567205012999151021102914

Scholey, A., Downey, L. A., Ciorciari, J., Pipingas, A., Nolidin, K., Finn, M., Wines, M., Catchlove, S.,

Terrens, A., Barlow, E., Gordon, L., & Stough, C. (2012). Acute neurocognitive effects of epigallocatechin

gallate (EGCG). Appetite, 58(2), 767–770. https://doi.org/10.1016/j.appet.2011.11.016

Schröder, L., Marahrens, P., Koch, J. G., Heidegger, H., Vilsmeier, T., Phan-Brehm, T., Hofmann, S.,

Mahner, S., Jeschke, U., & Richter, D. U. (2019). Effects of green tea, matcha tea and their components

epigallocatechin gallate and quercetin on MCF-7 and MDA-MB-231 breast carcinoma cells. Oncology

Reports, 41(1), 387–396. https://doi.org/10.3892/or.2018.6789

Seidler, P. M., Murray, K. A., Boyer, D. R., Ge, P., Sawaya, M. R., Hu, C. J., Cheng, X., Abskharon, R.,

Pan, H., DeTure, M. A., Williams, C. K., Dickson, D. W., Vinters, H. V., & Eisenberg, D. S. (2022).

Structure-based discovery of small molecules that disaggregate Alzheimer's disease tissue derived tau

fibrils in vitro. Nature communications, 13(1), 5451. https://doi.org/10.1038/s41467-022-32951-4

Shi, H., & Zhao, Y. (2024). Modulation of Tau Pathology in Alzheimer’s Disease by Dietary Bioactive

Compounds. International Journal of Molecular Sciences, 25(2), 831-.

https://doi.org/10.3390/ijms25020831

Singh, N. A., Mandal, A. K. A., & Khan, Z. A. (2016). Potential neuroprotective properties of

epigallocatechin-3-gallate (EGCG). Nutrition Journal, 15(1), 60–60.

https://doi.org/10.1186/s12937-016-0179-4

Skaria A. P. (2022). The economic and societal burden of Alzheimer disease: managed care considerations.

The American journal of managed care, 28(10 Suppl), S188–S196.

https://doi.org/10.37765/ajmc.2022.89236

Sokary, S., Al-Asmakh, M., Zakaria, Z., & Bawadi, H. (2022). The therapeutic potential of matcha tea: A

critical review on human and animal studies. Current research in food science, 6, 100396.

https://doi.org/10.1016/j.crfs.2022.11.015

Sun, X. Y., Li, L. J., Dong, Q. X., Zhu, J., Huang, Y. R., Hou, S. J., Yu, X. L., & Liu, R. T. (2021). Rutin

prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease. Journal of

neuroinflammation, 18(1), 131. https://doi.org/10.1186/s12974-021-02182-3

Unno, K., Pervin, M., Taguchi, K., Konishi, T., & Nakamura, Y. (2020). Green Tea Catechins Trigger

Immediate-Early Genes in the Hippocampus and Prevent Cognitive Decline and Lifespan Shortening.

Molecules (Basel, Switzerland), 25(7), 1484-. https://doi.org/10.3390/molecules25071484

Valavanidis, Athanasios. (2019). Tea, the Most Popular Beverage Worldwide, is Beneficial to Human

Health. Studies on antioxidant polyphenolic constituents and epidemiological evidence for disease

prevention. 1. 1-35.

Wachtel-Galor, S., & Benzie, I. F. F. (2011). Herbal Medicine: An Introduction to Its History, Usage,

Regulation, Current Trends, and Research Needs. In I. F. F. Benzie (Eds.) et. al., Herbal Medicine:

Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis.

Walton, H. S., & Dodd, P. R. (2007). Glutamate–glutamine cycling in Alzheimer’s disease. Neurochemistry

International, 50(7), 1052–1066. https://doi.org/10.1016/j.neuint.2006.10.007

Wang, S., Wang, Y.-J., Su, Y., Zhou, W., Yang, S., Zhang, R., Zhao, M., Li, Y., Zhang, Z., Zhan, D., & Liu,

R. (2012). Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases

the production of nitric oxide and proinflammatory cytokines. Neurotoxicology (Park Forest South), 33(3),

–490. https://doi.org/10.1016/j.neuro.2012.03.003

Wong-Guerra, M., Calfio, C., Maccioni, R. B., & Rojo, L. E. (2023). Revisiting the neuroinflammation

hypothesis in Alzheimer's disease: a focus on the druggability of current targets. Frontiers in pharmacology,

, 1161850. https://doi.org/10.3389/fphar.2023.1161850

Xu, P. X., Wang, S. W., Yu, X. L., Su, Y. J., Wang, T., Zhou, W. W., Zhang, H., Wang, Y. J., & Liu, R. T.

(2014). Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer

level and attenuating oxidative stress and neuroinflammation. Behavioral brain research, 264, 173–180.

https://doi.org/10.1016/j.bbr.2014.02.002

Zhang, M., & Tang, Z. (2023). Therapeutic potential of natural molecules against Alzheimer’s disease via

SIRT1 modulation. Biomedicine & Pharmacotherapy, 161, 114474–114474.

https://doi.org/10.1016/j.biopha.2023.114474

Zhang, Y., Chen, H., Li, R., Sterling, K., & Song, W. (2023). Amyloid β-based therapy for Alzheimer’s

disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 8(1), 248–248.

https://doi.org/10.1038/s41392-023-01484-7

Zhou, J., Lin, H., Xu, P., Yao, L., Xie, Q., Mao, L., & Wang, Y. (2020). Matcha green tea prevents

obesity-induced hypothalamic inflammation via suppressing the JAK2/STAT3 signaling pathway. Food &

Function, 11(10), 8987–8995. https://doi.org/10.1039/d0fo01500h

Published

11-30-2024

How to Cite

Parupalli, A., Varkey, D. J. ., Torremocha, V., & Kethar, J. (2024). From Cup to Cure: The Impact of Matcha Tea on Alzheimer’s Disease. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8262

Issue

Section

HS Research Articles