From Cup to Cure: The Impact of Matcha Tea on Alzheimer’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8262Keywords:
Alzheimer's Disease, Matcha Tea, EGCG, Caffeine, L-theanine, Rutin, QuercetinAbstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by neurofibrillary tangles, amyloid beta aggregation, and neuronal dysfunction and loss. Research into various therapeutic approaches to prevent AD onset is a significant field of study as no definitive cure currently exists. Globally, studies recognize herbal therapies for their accessibility, affordability, and health-promoting properties against neurodegenerative diseases. Matcha tea in particular, from the Camellia sinensis plant, comprises of components such as epigallocatechin-3-gallate (EGCG), caffeine, L-theanine, rutin, and quercetin which possess several anti-AD health-promoting properties. However, further research into the effects of individual components in matcha towards specific diseases is valid and required. Therefore, this study synthesized a comprehensive assessment of the specific AD-associated factors that matcha tea exhibited beneficial effects towards. The research methodology consisted of a secondary review and analysis of peer-reviewed research articles and primary sources. Epidemiological studies were utilized to investigate the various mechanisms that individual components in matcha employed against AD pathology and hallmarks. The research was compiled into a table demonstrating which components in matcha were associated with alleviating certain AD-associated factors. Finally, the practical applications of matcha and future considerations in the field were discussed. The results indicated that matcha’s components beneficially affected numerous AD hallmarks and employed various mechanisms to mitigate AD symptoms. Based on the results, it was concluded that matcha possesses several anti-AD health-promoting properties that may supplement and amplify current prevention strategies. Therefore, this study recommends matcha consumption as a preventative measure against AD.
Downloads
References or Bibliography
Alzheimer's Association. (2024). 2024 Alzheimer’s Disease Facts and Figures. Alzheimer’s Association.
https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf
Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s disease: Past, present and
future. Neuropharmacology, 76, 27–50. https://doi.org/10.1016/j.neuropharm.2013.07.004
Anas Sohail, A., Ortiz, F., Varghese, T., Fabara, S. P., Batth, A. S., Sandesara, D. P., Sabir, A., Khurana, M., Datta,
S., & Patel, U. K. (2021). The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic
Review. Curēus (Palo Alto, CA), 13(12), e20828–e20828. https://doi.org/10.7759/cureus.20828
Arendash, G. W., Schleif, W., Rezai-Zadeh, K., Jackson, E. K., Zacharia, L. C., Cracchiolo, J. R., Shippy,
D., & Tan, J. (2006). Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain
β-amyloid production. Neuroscience, 142(4), 941–952. https://doi.org/10.1016/j.neuroscience.2006.07.021
Baba, Y., Inagaki, S., Nakagawa, S., Kobayashi, M., Kaneko, T., & Takihara, T. (2021). Effects of Daily
Matcha and Caffeine Intake on Mild Acute Psychological Stress-Related Cognitive Function in
Middle-Aged and Older Adults: A Randomized Placebo-Controlled Study. Nutrients, 13(5), 1700-.
https://doi.org/10.3390/nu13051700
Bhat, R. A., Hakeem, K. R., & Dervash, M. A. (2021). Phytomedicine : a treasure of pharmacologically
active products from plants. Academic Press.
Camfield, D. A., Stough, C., Farrimond, J., & Scholey, A. B. (2014). Acute effects of tea constituents
L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and
meta-analysis. Nutrition reviews, 72(8), 507–522. https://doi.org/10.1111/nure.12120
Carman, A. J., Dacks, P. A., Lane, R. F., Shineman, D. W., & Fillit, H. M. (2014). Current evidence for the
use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. The Journal of
Nutrition, Health & Aging, 18(4), 383–392. https://doi.org/10.1007/s12603-014-0021-7
Centers for Disease Control and Prevention. (2020). What is Alzheimer’s disease? Www.cdc.gov; CDC.
https://www.cdc.gov/aging/aginginfo/alzheimers.htm#:~:text=Alzheimer
Chen, X., Guo, C., & Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural regeneration
research, 7(5), 376–385. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009
Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease.
Human Molecular Genetics, 19(R1), R12–R20. https://doi.org/10.1093/hmg/ddq160
Currais, A., Kato, K., Canuet, L., Ishii, R., Tanaka, T., Takeda, M., & Soriano, S. (2011). Caffeine
modulates tau phosphorylation and affects Akt signaling in postmitotic neurons. Journal of molecular
neuroscience : MN, 43(3), 326–332. https://doi.org/10.1007/s12031-010-9444-8
Drummond, E., Pires, G., MacMurray, C., Askenazi, M., Nayak, S., Bourdon, M., Safar, J., Ueberheide, B., &
Wisniewski, T. (2020). Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain : a journal of neurology, 143(9), 2803–2817. https://doi.org/10.1093/brain/awaa223
Gabarró-Solanas, R., & Urbán, N. (2023). It takes two to untangle: Combined stimulation of adult
neurogenesis reverts AD symptoms. Cell Stem Cell, 30(4), 333–334. https://doi.org/10.1016/j.stem.2023.03.012
Gardener, S. L., Rainey-Smith, S. R., Villemagne, V. L., Fripp, J., Doré, V., Bourgeat, P., Taddei, K.,
Fowler, C., Masters, C. L., Maruff, P., Rowe, C. C., Ames, D., & Martins, R. N. (2021). Higher Coffee
Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation
Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study. Frontiers in Aging
Neuroscience, 13, 744872–744872. https://doi.org/10.3389/fnagi.2021.744872
Geiser, R. J., Chastain, S. E., & Moss, M. A. (2017). Regulation of Bace1 Mrna Expression in Alzheimer’s
Disease by Green Tea Catechins and Black Tea Theaflavins. Biophysical Journal, 112(3), 362a–362a.
https://doi.org/10.1016/j.bpj.2016.11.1965
Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P.,
Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2022). Global estimates
on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s & Dementia: The Journal
of the Alzheimer’s Association, 19(2), 658–670. https://doi.org/10.1002/alz.12694
Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P.,
Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A.
(2021). The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 26(10), 5481–5503.
https://doi.org/10.1038/s41380-021-01249-0
Haque, A. M., Hashimoto, M., Katakura, M., Hara, Y., & Shido, O. (2008). Green tea catechins prevent cognitive
deficits caused by Aβ₁₋₄₀ in rats. The Journal of Nutritional Biochemistry, 19(9), 619–626. https://doi.org/10.1016/j.jnutbio.2007.08.008
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science
(American Association for the Advancement of Science), 256(5054), 184–185.
https://doi.org/10.1126/science.1566067
Ionescu-Tucker, A., & Cotman, C. W. (2021). Emerging roles of oxidative stress in brain aging and
Alzheimer’s disease. Neurobiology of Aging, 107, 86–95.
https://doi.org/10.1016/j.neurobiolaging.2021.07.014
Iwai, R., Ishii, T., Fukushima, Y., Okamoto, T., Ichihashi, M., Sasaki, Y., Mizuatni, K.I., (2021). Matcha and
its components control angiogenic potential. J. Nutr. Sci. Vitaminol. 67, 118–125.
https://doi.org/10.3177/jnsv.67.118.
Jakubczyk, K., Kochman, J., Kwiatkowska, A., Kałdunska, J., Dec, K., Kawczuga, D., & Janda, K. (2020).
Antioxidant properties and nutritional composition of matcha green tea. Foods, 9(4), 483-.
https://doi.org/10.3390/foods9040483
Javed, H., Khan, M. M., Ahmad, A., Vaibhav, K., Ahmad, M. E., Khan, A., Ashafaq, M., Islam, F.,
Siddiqui, M. S., & Safhi, M. M. (2012). Rutin prevents cognitive impairments by ameliorating oxidative
stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience, 210,
–352. https://doi.org/10.1016/j.neuroscience.2012.02.046
Jiang, N., Ma, J., Wang, Q., Xu, Y., & Wei, B. (2023). Tea intake or consumption and the risk of dementia:
a meta-analysis of prospective cohort studies. PeerJ, 11, e15688. https://doi.org/10.7717/peerj.15688
Kakuda, T., Hinoi, E., Abe, A., Nozawa, A., Ogura, M., & Yoneda, Y. (2008). Theanine, an ingredient of
green tea, inhibits [3H]glutamine transport in neurons and astroglia in rat brain. Journal of Neuroscience
Research, 86(8), 1846–1856. https://doi.org/10.1002/jnr.21637
Kakutani, S., Watanabe, H., & Murayama, N. (2019). Green Tea Intake and Risks for Dementia,
Alzheimer's Disease, Mild Cognitive Impairment, and Cognitive Impairment: A Systematic Review.
Nutrients, 11(5), 1165. https://doi.org/10.3390/nu11051165
Kamaljeet, Singh, S., Gupta, G. D., & Aran, K. R. (2024). Emerging role of antioxidants in Alzheimer’s
disease: Insight into physiological, pathological mechanisms and management. Pharmaceutical Science
Advances, 2, 100021-. https://doi.org/10.1016/j.pscia.2023.100021
Khan, A., Shal, B., Khan, A., Ali, H., & Khan, S. (2023). The potential role of herbal medicine and
nutraceutical in neuroinflammatory disorders: A mechanistic insight via multisignaling cascades. In
Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders (pp. 501–524).
https://doi.org/10.1016/B978-0-323-90052-2.00012-3
Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2019). Neuroprotective Effects of
Quercetin in Alzheimer’s Disease. Biomolecules (Basel, Switzerland), 10(1), 59-.
https://doi.org/10.3390/biom10010059
Khan, N., & Mukhtar, H. (2013). Tea and health: studies in humans. Current pharmaceutical design, 19(34),
–6147. https://doi.org/10.2174/1381612811319340008
Kim, J. M., Lee, U., Kang, J. Y., Park, S. K., Kim, J. C., & Heo, H. J. (2020). Matcha Improves Metabolic
Imbalance-Induced Cognitive Dysfunction. Oxidative medicine and cellular longevity, 2020, 8882763.
https://doi.org/10.1155/2020/8882763
Kim, T. I., Lee, Y. K., Park, S. G., Choi, I. S., Ban, J. O., Park, H. K., Nam, S. Y., Yun, Y. W., Han, S. B.,
Oh, K. W., & Hong, J. T. (2009). l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced
cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38
kinase and NF-kappaB pathways. Free radical biology & medicine, 47(11), 1601–1610.
https://doi.org/10.1016/j.freeradbiomed.2009.09.008
Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K (2021). Health Benefits and Chemical Composition of
Matcha Green Tea: A Review. Molecules. 26(1):85. https://doi.org/10.3390/molecules26010085
Mills, E., Cooper, C., Seely, D., & Kanfer, I. (2005). African herbal medicines in the treatment of HIV:
Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutrition journal, 4, 19.
https://doi.org/10.1186/1475-2891-4-19
Murman D. L. (2015). The Impact of Age on Cognition. Seminars in Hearing, 36(3), 111–121.
https://doi.org/10.1055/s-0035-1555115
Nagle, D. G., Ferreira, D., & Zhou, Y.-D. (2006). Epigallocatechin-3-gallate (EGCG): Chemical and
biomedical perspectives. Phytochemistry (Oxford), 67(17), 1849–1855.
https://doi.org/10.1016/j.phytochem.2006.06.020
National Institute on Aging. (2023). Alzheimer’s Disease fact sheet. National Institute on Aging.
https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet
Nishihira, J., Nishimura, M., Kurimoto, M., Kagami-Katsuyama, H., Hattori, H., Nakagawa, T., Muro, T.,
& Kobori, M. (2021). The effect of 24-week continuous intake of quercetin-rich onion on age-related
cognitive decline in healthy elderly people: a randomized, double-blind, placebo-controlled, parallel-group
comparative clinical trial. Journal of clinical biochemistry and nutrition, 69(2), 203–215.
https://doi.org/10.3164/jcbn.21-17
Ozben, T., & Ozben, S. (2019). Neuro-inflammation and anti-inflammatory treatment options for
Alzheimer’s disease. Clinical Biochemistry, 72, 87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001
Pan, R.-Y., Ma, J., Kong, X.-X., Wang, X.-F., Li, S.-S., Qi, X.-L., Yan, Y.-H., Cheng, J., Liu, Q., Jin, W
Tan, C.-H., & Yuan, Z. (2019). Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing
microglial amyloid-β clearance. Science Advances, 5(2), eaau6328–eaau6328.
https://doi.org/10.1126/SCIADV.AAU6328
Polito, C. A., Cai, Z.-Y., Shi, Y.-L., Li, X.-M., Yang, R., Shi, M., Li, Q.-S., Ma, S.-C., Xiang, L.-P., Wang,
K.-R., Ye, J.-H., Lu, J.-L., Zheng, X.-Q., & Liang, Y.-R. (2018). Association of Tea Consumption with Risk
of Alzheimer’s Disease and Anti-Beta-Amyloid Effects of Tea. Nutrients, 10(5), 655-.
https://doi.org/10.3390/nu10050655
Prasanthi, J. R., Dasari, B., Marwarha, G., Larson, T., Chen, X., Geiger, J. D., & Ghribi, O. (2010).
Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus
induced by cholesterol-enriched diet. Free radical biology & medicine, 49(7), 1212–1220.
https://doi.org/10.1016/j.freeradbiomed.2010.07.007
Ribarič, S. (2018). Peptides as Potential Therapeutics for Alzheimer’s Disease. Molecules (Basel,
Switzerland), 23(2), 283-. https://doi.org/10.3390/molecules23020283
Ruggiero, M., Calvello, R., Porro, C., Messina, G., Cianciulli, A., & Panaro, M. A. (2022).
Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation?
International Journal of Molecular Sciences, 23(21), 12958-. https://doi.org/10.3390/ijms232112958
Sabarathinam, S. (2024). Unraveling the therapeutic potential of quercetin and quercetin-3-O-glucuronide
in Alzheimer’s disease through network pharmacology, molecular docking, and dynamic simulations.
Scientific Reports, 14(1), 14852–14. https://doi.org/10.1038/s41598-024-61779-9
Saieed, P., Reza, R. M., Abbas, D., Seyyedvali, R., & Aliasghar, H. (2006). Inhibitory Effects of Ruta
graveolens L. Extract on Guinea Pig Liver Aldehyde Oxidase. Chemical & Pharmaceutical Bulletin, 54(1),
–13. https://doi.org/10.1248/cpb.54.9
Sakurai, K., Shen, C., Ezaki, Y., Inamura, N., Fukushima, Y., Masuoka, N., & Hisatsune, T. (2020). Effects
of Matcha Green Tea Powder on Cognitive Functions of Community-Dwelling Elderly Individuals.
Nutrients, 12(12), 3639. https://doi.org/10.3390/nu12123639
Salehi, A., Ashford, J. W., & Mufson, E. J. (2016). The Link between Alzheimer's Disease and Down
Syndrome. A Historical Perspective. Current Alzheimer research, 13(1), 2–6.
https://doi.org/10.2174/1567205012999151021102914
Scholey, A., Downey, L. A., Ciorciari, J., Pipingas, A., Nolidin, K., Finn, M., Wines, M., Catchlove, S.,
Terrens, A., Barlow, E., Gordon, L., & Stough, C. (2012). Acute neurocognitive effects of epigallocatechin
gallate (EGCG). Appetite, 58(2), 767–770. https://doi.org/10.1016/j.appet.2011.11.016
Schröder, L., Marahrens, P., Koch, J. G., Heidegger, H., Vilsmeier, T., Phan-Brehm, T., Hofmann, S.,
Mahner, S., Jeschke, U., & Richter, D. U. (2019). Effects of green tea, matcha tea and their components
epigallocatechin gallate and quercetin on MCF-7 and MDA-MB-231 breast carcinoma cells. Oncology
Reports, 41(1), 387–396. https://doi.org/10.3892/or.2018.6789
Seidler, P. M., Murray, K. A., Boyer, D. R., Ge, P., Sawaya, M. R., Hu, C. J., Cheng, X., Abskharon, R.,
Pan, H., DeTure, M. A., Williams, C. K., Dickson, D. W., Vinters, H. V., & Eisenberg, D. S. (2022).
Structure-based discovery of small molecules that disaggregate Alzheimer's disease tissue derived tau
fibrils in vitro. Nature communications, 13(1), 5451. https://doi.org/10.1038/s41467-022-32951-4
Shi, H., & Zhao, Y. (2024). Modulation of Tau Pathology in Alzheimer’s Disease by Dietary Bioactive
Compounds. International Journal of Molecular Sciences, 25(2), 831-.
https://doi.org/10.3390/ijms25020831
Singh, N. A., Mandal, A. K. A., & Khan, Z. A. (2016). Potential neuroprotective properties of
epigallocatechin-3-gallate (EGCG). Nutrition Journal, 15(1), 60–60.
https://doi.org/10.1186/s12937-016-0179-4
Skaria A. P. (2022). The economic and societal burden of Alzheimer disease: managed care considerations.
The American journal of managed care, 28(10 Suppl), S188–S196.
https://doi.org/10.37765/ajmc.2022.89236
Sokary, S., Al-Asmakh, M., Zakaria, Z., & Bawadi, H. (2022). The therapeutic potential of matcha tea: A
critical review on human and animal studies. Current research in food science, 6, 100396.
https://doi.org/10.1016/j.crfs.2022.11.015
Sun, X. Y., Li, L. J., Dong, Q. X., Zhu, J., Huang, Y. R., Hou, S. J., Yu, X. L., & Liu, R. T. (2021). Rutin
prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease. Journal of
neuroinflammation, 18(1), 131. https://doi.org/10.1186/s12974-021-02182-3
Unno, K., Pervin, M., Taguchi, K., Konishi, T., & Nakamura, Y. (2020). Green Tea Catechins Trigger
Immediate-Early Genes in the Hippocampus and Prevent Cognitive Decline and Lifespan Shortening.
Molecules (Basel, Switzerland), 25(7), 1484-. https://doi.org/10.3390/molecules25071484
Valavanidis, Athanasios. (2019). Tea, the Most Popular Beverage Worldwide, is Beneficial to Human
Health. Studies on antioxidant polyphenolic constituents and epidemiological evidence for disease
prevention. 1. 1-35.
Wachtel-Galor, S., & Benzie, I. F. F. (2011). Herbal Medicine: An Introduction to Its History, Usage,
Regulation, Current Trends, and Research Needs. In I. F. F. Benzie (Eds.) et. al., Herbal Medicine:
Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis.
Walton, H. S., & Dodd, P. R. (2007). Glutamate–glutamine cycling in Alzheimer’s disease. Neurochemistry
International, 50(7), 1052–1066. https://doi.org/10.1016/j.neuint.2006.10.007
Wang, S., Wang, Y.-J., Su, Y., Zhou, W., Yang, S., Zhang, R., Zhao, M., Li, Y., Zhang, Z., Zhan, D., & Liu,
R. (2012). Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases
the production of nitric oxide and proinflammatory cytokines. Neurotoxicology (Park Forest South), 33(3),
–490. https://doi.org/10.1016/j.neuro.2012.03.003
Wong-Guerra, M., Calfio, C., Maccioni, R. B., & Rojo, L. E. (2023). Revisiting the neuroinflammation
hypothesis in Alzheimer's disease: a focus on the druggability of current targets. Frontiers in pharmacology,
, 1161850. https://doi.org/10.3389/fphar.2023.1161850
Xu, P. X., Wang, S. W., Yu, X. L., Su, Y. J., Wang, T., Zhou, W. W., Zhang, H., Wang, Y. J., & Liu, R. T.
(2014). Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer
level and attenuating oxidative stress and neuroinflammation. Behavioral brain research, 264, 173–180.
https://doi.org/10.1016/j.bbr.2014.02.002
Zhang, M., & Tang, Z. (2023). Therapeutic potential of natural molecules against Alzheimer’s disease via
SIRT1 modulation. Biomedicine & Pharmacotherapy, 161, 114474–114474.
https://doi.org/10.1016/j.biopha.2023.114474
Zhang, Y., Chen, H., Li, R., Sterling, K., & Song, W. (2023). Amyloid β-based therapy for Alzheimer’s
disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 8(1), 248–248.
https://doi.org/10.1038/s41392-023-01484-7
Zhou, J., Lin, H., Xu, P., Yao, L., Xie, Q., Mao, L., & Wang, Y. (2020). Matcha green tea prevents
obesity-induced hypothalamic inflammation via suppressing the JAK2/STAT3 signaling pathway. Food &
Function, 11(10), 8987–8995. https://doi.org/10.1039/d0fo01500h
Published
How to Cite
Issue
Section
Copyright (c) 2024 Adhiti Parupalli; Dr. Jobin Varkey, Virgel Torremocha, Jothsna Kethar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


