Exploring New Strategies to Overcome Immunotherapy Resistance in Non-Small Cell Lung Cancer
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8260Keywords:
Immunotherapy, Immune Checkpoint Inhibitors, Non-Small Cell Lung Cancer, Treatment Resistance, Tumor Microenvironment, Antigen Presentation, Signaling Pathways, Immunogenicity, Immune Checkpoint Molecules, Combination Therapy, Monotherapy, Genetic Mutations, CTLA-4, PD-L1, PD-1, TIGIT, TIM-3, VISTA, LAG-3Abstract
Non-small cell lung cancer (NSCLC) is a disease that has been negatively impacting the lives of tens of thousands of families each year. Yet, despite consistent research efforts, a cure for this cancer still hasn’t been developed. Though there are many treatment options for NSCLC, the majority of these are not completely effective and tend to have numerous side effects that come with them. Over the past few decades, immune checkpoint inhibitors (ICIs), a common form of immunotherapy, have risen as a promising discovery in cancer treatment research. Unlike other treatment types, ICIs work to activate the immune system’s natural response to antigens by blocking checkpoint proteins which have the ability to inhibit immune cell function. Particularly for NSCLC, ICI treatment has shown many encouraging outcomes, due to its ability to work well against the complexity of the disease. However, there’s only one downside: many NSCLC patients tend to develop either primary or acquired resistance to treatment, due to numerous factors involving genetic mutations that are unique to the tumors in each individual. This paper primarily focuses on identifying the most common NSCLC treatment resistance mechanisms, and exploring the most effective methods involving ICIs in order to overcome this resistance.
Downloads
References or Bibliography
Advances in Lung Cancer Research. (n.d.). National Cancer Institute. https://www.cancer.gov/types/lung/research
Aigner, C., Du Pont, B., Hartemink, K., Wiesweg, M., Vanbockrijck, M., Darwiche, K., Hegedus, B., Schramm, A., Hautzel, H., Maes, B., Theegarten, D., Schildhaus, H.-U., Baas, P., Cuppens, K., Schuler, M. H., & Plönes, T. (2023). Surgical outcomes of patients with resectable non-small-cell lung cancer receiving neoadjuvant immunotherapy with nivolumab plus relatlimab or nivolumab: Findings from the prospective, randomized, multicentric phase II study NEOpredict-lung. Journal of Clinical Oncology, 41(16_suppl), 8500. https://doi.org/10.1200/jco.2023.41.16_suppl.8500
Altorki, N. K., McGraw, T. E., Borczuk, A. C., Saxena, A., Port, J. L., Stiles, B. M., Lee, B. E., Sanfilippo, N. J., Scheff, R. J., Pua, B. B., Gruden, J. F., Christos, P. J., Spinelli, C., Gakuria, J., Uppal, M., Binder, B., Elemento, O., Ballman, K. V., & Formenti, S. C. (2021). Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: A single-centre, randomised phase 2 trial. The Lancet Oncology, 22(6), 824-835. https://doi.org/10.1016/s1470-2045(21)00149-2
Anichini, A., Perotti, V. E., Sgambelluri, F., & Mortarini, R. (2020). Immune escape mechanisms in non small cell lung cancer. Cancers, 12(12), 3605. https://doi.org/10.3390/cancers12123605
Barrueto, L., Caminero, F., Cash, L., Makris, C., Lamichhane, P., & Deshmukh, R. R. (2020). Resistance to checkpoint inhibition in cancer immunotherapy. Translational Oncology, 13(3), 100738. https://doi.org/10.1016/j.tranon.2019.12.010
Boyce, P. (Ed.). (2024). Is Immunotherapy Right for Me? WebMD. https://www.webmd.com/lung-cancer/lung-cancer-immunotherapy-overview
Brahmer, J., Reckamp, K. L., Baas, P., Crinò, L., Eberhardt, W. E., Poddubskaya, E., Antonia, S., Pluzanski, A., Vokes, E. E., Holgado, E., Waterhouse, D., Ready, N., Gainor, J., Arén Frontera, O., Havel, L., Steins, M., Garassino, M. C., Aerts, J. G., Domine, M., . . . Spigel, D. R. (2015). Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. New England Journal of Medicine, 373(2), 123-135. https://doi.org/10.1056/nejmoa1504627
Cascone, T., Kar, G., Spicer, J. D., García-Campelo, R., Weder, W., Daniel, D. B., Spigel, D. R., Hussein, M., Mazieres, J., Oliveira, J., Yau, E. H., Spira, A. I., Anagnostou, V., Mager, R., Hamid, O., Cheng, L.-Y., Zheng, Y., Blando, J., Tan, T. H., . . . Forde, P. M. (2023). Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: The phase II neocoast platform trial. Cancer Discovery, 13(11), 2394-2411. https://doi.org/10.1158/2159-8290.cd-23-0436
Checkpoint Inhibitors. (2021). Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/treatment/immunotherapy/types/checkpoint-inhibitors#:~:text=T%20cells%20have%20proteins%20on%20them%20that%20turn%20the%20immune,turning%20the%20T%20cells%20off%20%E2%80%A6.
Chen, M., Li, Q., Xu, Y., Zhao, J., Zhang, L., Wei, L., Zhong, W., & Wang, M. (2020). Immunotherapy as second‐line treatment and beyond for non‐small cell lung cancer in a single center of china: Outcomes, toxicities, and clinical predictive factors from a real‐world retrospective analysis. Thoracic Cancer, 11(7), 1955-1962. https://doi.org/10.1111/1759-7714.13488
Chocarro, L., Blanco, E., Zuazo, M., Arasanz, H., Bocanegra, A., Fernández-Rubio, L., Morente, P., Fernández-Hinojal, G., Echaide, M., Garnica, M., Ramos, P., Vera, R., Kochan, G., & Escors, D. (2021). Understanding lag-3 signaling. International Journal of Molecular Sciences, 22(10), 5282. https://doi.org/10.3390/ijms22105282
Ciupka, B. (2020). Small Cell Lung Cancer vs. Non-small Cell Lung Cancer: What's the Difference? National Foundation for Cancer Research. https://www.nfcr.org/blog/small-cell-lung-cancer-vs-non-small-cell-lung-cancer-whats-the-difference/
Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenkiste, J., Mazieres, J., Park, K., Smith, D., Artal-Cortes, A., Lewanski, C., Braiteh, F., Waterkamp, D., He, P., Zou, W., Chen, D. S., Yi, J., Sandler, A., & Rittmeyer, A. (2016). Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. The Lancet, 387(10030), 1837-1846. https://doi.org/10.1016/s0140-6736(16)00587-0
Harjunpää, H., & Guillerey, C. (2019). TIGIT as an emerging immune checkpoint. Clinical and Experimental Immunology, 200(2), 108-119. https://doi.org/10.1111/cei.13407
Ibrahim, R., Saleh, K., Chahine, C., Khoury, R., Khalife, N., & Cesne, A. L. (2023). LAG-3 inhibitors: Novel immune checkpoint inhibitors changing the landscape of immunotherapy. Biomedicines, 11(7), 1878. https://doi.org/10.3390/biomedicines11071878
Immune Checkpoint Inhibitors. (n.d.). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
Immunotherapy to Treat Cancer. (2019). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy#how-does-immunotherapy-work-against-cancer
Judd, J., Abdel Karim, N., Khan, H., Naqash, A. R., Baca, Y., Xiu, J., VanderWalde, A. M., Mamdani, H., Raez, L. E., Nagasaka, M., Pai, S. G., Socinski, M. A., Nieva, J. J., Kim, C., Wozniak, A. J., Ikpeazu, C., de Lima Lopes, G., Spira, A. I., Korn, W. M., . . . Borghaei, H. (2021). Characterization of KRAS mutation subtypes in non–small cell lung cancer. Molecular Cancer Therapeutics, 20(12), 2577-2584. https://doi.org/10.1158/1535-7163.mct-21-0201
Key Statistics for Lung Cancer. (2024). American Cancer Society. https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html
Koyama, S., Akbay, E. A., Li, Y. Y., Herter-Sprie, G. S., Buczkowski, K. A., Richards, W. G., Gandhi, L., Redig, A. J., Rodig, S. J., Asahina, H., Jones, R. E., Kulkarni, M. M., Kuraguchi, M., Palakurthi, S., Fecci, P. E., Johnson, B. E., Janne, P. A., Engelman, J. A., Gangadharan, S. P., . . . Hammerman, P. S. (2016). Adaptive resistance to therapeutic pd-1 blockade is associated with upregulation of alternative immune checkpoints. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10501
Kumar, A. R., Devan, A. R., Nair, B., Vinod, B. S., & Nath, L. R. (2021). Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Molecular Biology Reports, 48(12), 8075-8095. https://doi.org/10.1007/s11033-021-06752-9
Langer, C. J., Gadgeel, S. M., Borghaei, H., Papadimitrakopoulou, V. A., Patnaik, A., Powell, S. F., Gentzler, R. D., Martins, R. G., Stevenson, J. P., Jalal, S. I., Panwalkar, A., Yang, J. C.-H., Gubens, M., Sequist, L. V., Awad, M. M., Fiore, J., Ge, Y., Raftopoulos, H., & Gandhi, L. (2016). Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label keynote-021 study. The Lancet Oncology, 17(11), 1497-1508. https://doi.org/10.1016/s1470-2045(16)30498-3
Lee, J. B., Ha, S.-J., & Kim, H. R. (2021). Clinical insights into novel immune checkpoint inhibitors. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.681320
Liu, M., Xiao, K., & Yang, L. (2023). EGFR inhibitor erlotinib plus monoclonal antibody versus erlotinib alone for first-line treatment of advanced non-small cell lung carcinoma: A systematic review and meta-analysis. International Immunopharmacology, 119, 110001. https://doi.org/10.1016/j.intimp.2023.110001
Lung Cancer Key Findings. (2023). American Lung Association. https://www.lung.org/research/state-of-lung-cancer/key-findings
McGranahan, N., Rosenthal, R., Hiley, C. T., Rowan, A. J., Watkins, T. B., Wilson, G. A., Birkbak, N. J., Veeriah, S., Van Loo, P., Herrero, J., Swanton, C., Swanton, C., Jamal-Hanjani, M., Veeriah, S., Shafi, S., Czyzewska-Khan, J., Johnson, D., Laycock, J., Bosshard-Carter, L., . . . Escudero, M. (2017). Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell, 171(6), 1259-1271.e11. https://doi.org/10.1016/j.cell.2017.10.001
Messenheimer, D. J., Jensen, S. M., Afentoulis, M. E., Wegmann, K. W., Feng, Z., Friedman, D. J., Gough, M. J., Urba, W. J., & Fox, B. A. (2017). Timing of pd-1 blockade is critical to effective combination immunotherapy with anti-ox40. Clinical Cancer Research, 23(20), 6165-6177. https://doi.org/10.1158/1078-0432.ccr-16-2677
Olivares-Hernández, A., González del Portillo, E., Tamayo-Velasco, Á., Figuero-Pérez, L., Zhilina-Zhilina, S., Fonseca-Sánchez, E., & Miramontes-González, J. P. (2023). Immune checkpoint inhibitors in non-small cell lung cancer: From current perspectives to future treatments—a systematic review. Annals of Translational Medicine, 11(10), 354. https://doi.org/10.21037/atm-22-4218
Oncology (Cancer) / Hematologic Malignancies Approval Notifications. (2024). U.S. Food & Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
Passaro, A., Brahmer, J., Antonia, S., Mok, T., & Peters, S. (2022). Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. Journal of Clinical Oncology, 40(6), 598-610. https://doi.org/10.1200/jco.21.01845
Patwekar, M., Sehar, N., Patwekar, F., Medikeri, A., Ali, S., Aldossri, R. M., & Rehman, M. U. (2024). Novel immune checkpoint targets: A promising therapy for cancer treatments. International Immunopharmacology, 126, 111186. https://doi.org/10.1016/j.intimp.2023.111186
Paz-Ares, L., Horn, L., Borghaei, H., Spigel, D. R., Steins, M., Ready, N., Chow, L. Q. M., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhaeufl, M., Rodriguez, O., Burgio, M. A., Fayette, J., Gettinger, S. N., Harbison, C., Dorange, C., Finckenstein, F. G., & Brahmer, J. R. (2015). Phase iii, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 33(18_suppl), LBA109. https://doi.org/10.1200/jco.2015.33.18_suppl.lba109
Pérez-Ruiz, E., Melero, I., Kopecka, J., Sarmento-Ribeiro, A. B., García-Aranda, M., & De Las Rivas, J. (2020). Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resistance Updates, 53, 100718. https://doi.org/10.1016/j.drup.2020.100718
Rodriguez-Abreu, D., Johnson, M. L., Hussein, M. A., Cobo, M., Patel, A. J., Secen, N. M., Lee, K. H., Massuti, B., Hiret, S., Yang, J. C.-H., Barlesi, F., Lee, D. H., Paz-Ares, L. G., Hsieh, R. W., Miller, K., Patil, N., Twomey, P., Kapp, A. V., Meng, R., & Cho, B. C. (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with pd-l1-selected NSCLC (CITYSCAPE). Journal of Clinical Oncology, 38(15_suppl), 9503. https://doi.org/10.1200/jco.2020.38.15_suppl.9503
Sauls, R. S., McCausland, C., & Taylor, B. N. (2023). Histology, T-Cell Lymphocyte. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK535433/
Tagliamento, M., Agostinetto, E., Borea, R., Brandão, M., Poggio, F., Addeo, A., & Lambertini, M. (2021). VISTA: A promising target for cancer immunotherapy? ImmunoTargets and Therapy, Volume 10, 185-200. https://doi.org/10.2147/itt.s260429
Toor, S. M., Sasidharan Nair, V., Decock, J., & Elkord, E. (2020). Immune checkpoints in the tumor microenvironment. Seminars in Cancer Biology, 65, 1-12. https://doi.org/10.1016/j.semcancer.2019.06.021
Treatment Choices for Non-Small Cell Lung Cancer, by Stage. (2024). American Cancer Society. https://www.cancer.org/cancer/types/lung-cancer/treating-non-small-cell/by-stage.html
Villarroel-Espindola, F., Yu, X., Datar, I., Mani, N., Sanmamed, M., Velcheti, V., Syrigos, K., Toki, M., Zhao, H., Chen, L., Herbst, R. S., & Schalper, K. A. (2018). Spatially resolved and quantitative analysis of vista/pd-1h as a novel immunotherapy target in human non–small cell lung cancer. Clinical Cancer Research, 24(7), 1562-1573. https://doi.org/10.1158/1078-0432.ccr-17-2542
Vugmeyster, Y., Wilkins, J., Koenig, A., El Bawab, S., Dussault, I., Ojalvo, L. S., De Banerjee, S., Klopp‐Schulze, L., & Khandelwal, A. (2020). Selection of the recommended phase 2 dose for bintrafusp alfa, a bifunctional fusion protein targeting tgf‐β and pd‐l1. Clinical Pharmacology & Therapeutics, 108(3), 566-574. https://doi.org/10.1002/ cpt.1776
Wang, X., Niu, X., An, N., Sun, Y., & Chen, Z. (2021). Comparative efficacy and safety of immunotherapy alone and in combination with chemotherapy for advanced non-small cell lung cancer. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.611012
Zhang, N., Zeng, Y., Du, W., Zhu, J., Shen, D., Liu, Z., & Huang, J.-A. (2016). The EGFR pathway is involved in the regulation of pd-l1 expression via the il-6/jak/stat3 signaling pathway in egfr-mutated non-small cell lung cancer. International Journal of Oncology, 49(4), 1360-1368. https://doi.org/10.3892/ijo.2016.3632
Zhou, S., & Yang, H. (2023). Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1129465
Zhu, C., Anderson, A. C., & Kuchroo, V. K. (2010). TIM-3 and its regulatory role in immune responses. Current Topics in Microbiology and Immunology, 1-15. https://doi.org/10.1007/82_2010_84
Published
How to Cite
Issue
Section
Copyright (c) 2024 Sarayu Thatikonda; Coach Jo, Dr. Parajuli, Professor Virgel

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


