Exploring New Strategies to Overcome Immunotherapy Resistance in Non-Small Cell Lung Cancer

Authors

  • Sarayu Thatikonda Marriotts Ridge High School
  • Coach Jo Gifted Gabber
  • Dr. Parajuli Research Assistant Professor at Wayne State University
  • Professor Virgel University of Southeastern Philippines

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8260

Keywords:

Immunotherapy, Immune Checkpoint Inhibitors, Non-Small Cell Lung Cancer, Treatment Resistance, Tumor Microenvironment, Antigen Presentation, Signaling Pathways, Immunogenicity, Immune Checkpoint Molecules, Combination Therapy, Monotherapy, Genetic Mutations, CTLA-4, PD-L1, PD-1, TIGIT, TIM-3, VISTA, LAG-3

Abstract

Non-small cell lung cancer (NSCLC) is a disease that has been negatively impacting the lives of tens of thousands of families each year. Yet, despite consistent research efforts, a cure for this cancer still hasn’t been developed. Though there are many treatment options for NSCLC, the majority of these are not completely effective and tend to have numerous side effects that come with them. Over the past few decades, immune checkpoint inhibitors (ICIs), a common form of immunotherapy, have risen as a promising discovery in cancer treatment research. Unlike other treatment types, ICIs work to activate the immune system’s natural response to antigens by blocking checkpoint proteins which have the ability to inhibit immune cell function. Particularly for NSCLC, ICI treatment has shown many encouraging outcomes, due to its ability to work well against the complexity of the disease. However, there’s only one downside: many NSCLC patients tend to develop either primary or acquired resistance to treatment, due to numerous factors involving genetic mutations that are unique to the tumors in each individual. This paper primarily focuses on identifying the most common NSCLC treatment resistance mechanisms, and exploring the most effective methods involving ICIs in order to overcome this resistance.

Downloads

Download data is not yet available.

References or Bibliography

Advances in Lung Cancer Research. (n.d.). National Cancer Institute. https://www.cancer.gov/types/lung/research

Aigner, C., Du Pont, B., Hartemink, K., Wiesweg, M., Vanbockrijck, M., Darwiche, K., Hegedus, B., Schramm, A., Hautzel, H., Maes, B., Theegarten, D., Schildhaus, H.-U., Baas, P., Cuppens, K., Schuler, M. H., & Plönes, T. (2023). Surgical outcomes of patients with resectable non-small-cell lung cancer receiving neoadjuvant immunotherapy with nivolumab plus relatlimab or nivolumab: Findings from the prospective, randomized, multicentric phase II study NEOpredict-lung. Journal of Clinical Oncology, 41(16_suppl), 8500. https://doi.org/10.1200/jco.2023.41.16_suppl.8500

Altorki, N. K., McGraw, T. E., Borczuk, A. C., Saxena, A., Port, J. L., Stiles, B. M., Lee, B. E., Sanfilippo, N. J., Scheff, R. J., Pua, B. B., Gruden, J. F., Christos, P. J., Spinelli, C., Gakuria, J., Uppal, M., Binder, B., Elemento, O., Ballman, K. V., & Formenti, S. C. (2021). Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: A single-centre, randomised phase 2 trial. The Lancet Oncology, 22(6), 824-835. https://doi.org/10.1016/s1470-2045(21)00149-2

Anichini, A., Perotti, V. E., Sgambelluri, F., & Mortarini, R. (2020). Immune escape mechanisms in non small cell lung cancer. Cancers, 12(12), 3605. https://doi.org/10.3390/cancers12123605

Barrueto, L., Caminero, F., Cash, L., Makris, C., Lamichhane, P., & Deshmukh, R. R. (2020). Resistance to checkpoint inhibition in cancer immunotherapy. Translational Oncology, 13(3), 100738. https://doi.org/10.1016/j.tranon.2019.12.010

Boyce, P. (Ed.). (2024). Is Immunotherapy Right for Me? WebMD. https://www.webmd.com/lung-cancer/lung-cancer-immunotherapy-overview

Brahmer, J., Reckamp, K. L., Baas, P., Crinò, L., Eberhardt, W. E., Poddubskaya, E., Antonia, S., Pluzanski, A., Vokes, E. E., Holgado, E., Waterhouse, D., Ready, N., Gainor, J., Arén Frontera, O., Havel, L., Steins, M., Garassino, M. C., Aerts, J. G., Domine, M., . . . Spigel, D. R. (2015). Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. New England Journal of Medicine, 373(2), 123-135. https://doi.org/10.1056/nejmoa1504627

Cascone, T., Kar, G., Spicer, J. D., García-Campelo, R., Weder, W., Daniel, D. B., Spigel, D. R., Hussein, M., Mazieres, J., Oliveira, J., Yau, E. H., Spira, A. I., Anagnostou, V., Mager, R., Hamid, O., Cheng, L.-Y., Zheng, Y., Blando, J., Tan, T. H., . . . Forde, P. M. (2023). Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: The phase II neocoast platform trial. Cancer Discovery, 13(11), 2394-2411. https://doi.org/10.1158/2159-8290.cd-23-0436

Checkpoint Inhibitors. (2021). Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/treatment/immunotherapy/types/checkpoint-inhibitors#:~:text=T%20cells%20have%20proteins%20on%20them%20that%20turn%20the%20immune,turning%20the%20T%20cells%20off%20%E2%80%A6.

Chen, M., Li, Q., Xu, Y., Zhao, J., Zhang, L., Wei, L., Zhong, W., & Wang, M. (2020). Immunotherapy as second‐line treatment and beyond for non‐small cell lung cancer in a single center of china: Outcomes, toxicities, and clinical predictive factors from a real‐world retrospective analysis. Thoracic Cancer, 11(7), 1955-1962. https://doi.org/10.1111/1759-7714.13488

Chocarro, L., Blanco, E., Zuazo, M., Arasanz, H., Bocanegra, A., Fernández-Rubio, L., Morente, P., Fernández-Hinojal, G., Echaide, M., Garnica, M., Ramos, P., Vera, R., Kochan, G., & Escors, D. (2021). Understanding lag-3 signaling. International Journal of Molecular Sciences, 22(10), 5282. https://doi.org/10.3390/ijms22105282

Ciupka, B. (2020). Small Cell Lung Cancer vs. Non-small Cell Lung Cancer: What's the Difference? National Foundation for Cancer Research. https://www.nfcr.org/blog/small-cell-lung-cancer-vs-non-small-cell-lung-cancer-whats-the-difference/

Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenkiste, J., Mazieres, J., Park, K., Smith, D., Artal-Cortes, A., Lewanski, C., Braiteh, F., Waterkamp, D., He, P., Zou, W., Chen, D. S., Yi, J., Sandler, A., & Rittmeyer, A. (2016). Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. The Lancet, 387(10030), 1837-1846. https://doi.org/10.1016/s0140-6736(16)00587-0

Harjunpää, H., & Guillerey, C. (2019). TIGIT as an emerging immune checkpoint. Clinical and Experimental Immunology, 200(2), 108-119. https://doi.org/10.1111/cei.13407

Ibrahim, R., Saleh, K., Chahine, C., Khoury, R., Khalife, N., & Cesne, A. L. (2023). LAG-3 inhibitors: Novel immune checkpoint inhibitors changing the landscape of immunotherapy. Biomedicines, 11(7), 1878. https://doi.org/10.3390/biomedicines11071878

Immune Checkpoint Inhibitors. (n.d.). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors

Immunotherapy to Treat Cancer. (2019). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy#how-does-immunotherapy-work-against-cancer

Judd, J., Abdel Karim, N., Khan, H., Naqash, A. R., Baca, Y., Xiu, J., VanderWalde, A. M., Mamdani, H., Raez, L. E., Nagasaka, M., Pai, S. G., Socinski, M. A., Nieva, J. J., Kim, C., Wozniak, A. J., Ikpeazu, C., de Lima Lopes, G., Spira, A. I., Korn, W. M., . . . Borghaei, H. (2021). Characterization of KRAS mutation subtypes in non–small cell lung cancer. Molecular Cancer Therapeutics, 20(12), 2577-2584. https://doi.org/10.1158/1535-7163.mct-21-0201

Key Statistics for Lung Cancer. (2024). American Cancer Society. https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html

Koyama, S., Akbay, E. A., Li, Y. Y., Herter-Sprie, G. S., Buczkowski, K. A., Richards, W. G., Gandhi, L., Redig, A. J., Rodig, S. J., Asahina, H., Jones, R. E., Kulkarni, M. M., Kuraguchi, M., Palakurthi, S., Fecci, P. E., Johnson, B. E., Janne, P. A., Engelman, J. A., Gangadharan, S. P., . . . Hammerman, P. S. (2016). Adaptive resistance to therapeutic pd-1 blockade is associated with upregulation of alternative immune checkpoints. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10501

Kumar, A. R., Devan, A. R., Nair, B., Vinod, B. S., & Nath, L. R. (2021). Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Molecular Biology Reports, 48(12), 8075-8095. https://doi.org/10.1007/s11033-021-06752-9

Langer, C. J., Gadgeel, S. M., Borghaei, H., Papadimitrakopoulou, V. A., Patnaik, A., Powell, S. F., Gentzler, R. D., Martins, R. G., Stevenson, J. P., Jalal, S. I., Panwalkar, A., Yang, J. C.-H., Gubens, M., Sequist, L. V., Awad, M. M., Fiore, J., Ge, Y., Raftopoulos, H., & Gandhi, L. (2016). Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label keynote-021 study. The Lancet Oncology, 17(11), 1497-1508. https://doi.org/10.1016/s1470-2045(16)30498-3

Lee, J. B., Ha, S.-J., & Kim, H. R. (2021). Clinical insights into novel immune checkpoint inhibitors. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.681320

Liu, M., Xiao, K., & Yang, L. (2023). EGFR inhibitor erlotinib plus monoclonal antibody versus erlotinib alone for first-line treatment of advanced non-small cell lung carcinoma: A systematic review and meta-analysis. International Immunopharmacology, 119, 110001. https://doi.org/10.1016/j.intimp.2023.110001

Lung Cancer Key Findings. (2023). American Lung Association. https://www.lung.org/research/state-of-lung-cancer/key-findings

McGranahan, N., Rosenthal, R., Hiley, C. T., Rowan, A. J., Watkins, T. B., Wilson, G. A., Birkbak, N. J., Veeriah, S., Van Loo, P., Herrero, J., Swanton, C., Swanton, C., Jamal-Hanjani, M., Veeriah, S., Shafi, S., Czyzewska-Khan, J., Johnson, D., Laycock, J., Bosshard-Carter, L., . . . Escudero, M. (2017). Allele-Specific HLA loss and immune escape in lung cancer evolution. Cell, 171(6), 1259-1271.e11. https://doi.org/10.1016/j.cell.2017.10.001

Messenheimer, D. J., Jensen, S. M., Afentoulis, M. E., Wegmann, K. W., Feng, Z., Friedman, D. J., Gough, M. J., Urba, W. J., & Fox, B. A. (2017). Timing of pd-1 blockade is critical to effective combination immunotherapy with anti-ox40. Clinical Cancer Research, 23(20), 6165-6177. https://doi.org/10.1158/1078-0432.ccr-16-2677

Olivares-Hernández, A., González del Portillo, E., Tamayo-Velasco, Á., Figuero-Pérez, L., Zhilina-Zhilina, S., Fonseca-Sánchez, E., & Miramontes-González, J. P. (2023). Immune checkpoint inhibitors in non-small cell lung cancer: From current perspectives to future treatments—a systematic review. Annals of Translational Medicine, 11(10), 354. https://doi.org/10.21037/atm-22-4218

Oncology (Cancer) / Hematologic Malignancies Approval Notifications. (2024). U.S. Food & Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications

Passaro, A., Brahmer, J., Antonia, S., Mok, T., & Peters, S. (2022). Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. Journal of Clinical Oncology, 40(6), 598-610. https://doi.org/10.1200/jco.21.01845

Patwekar, M., Sehar, N., Patwekar, F., Medikeri, A., Ali, S., Aldossri, R. M., & Rehman, M. U. (2024). Novel immune checkpoint targets: A promising therapy for cancer treatments. International Immunopharmacology, 126, 111186. https://doi.org/10.1016/j.intimp.2023.111186

Paz-Ares, L., Horn, L., Borghaei, H., Spigel, D. R., Steins, M., Ready, N., Chow, L. Q. M., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhaeufl, M., Rodriguez, O., Burgio, M. A., Fayette, J., Gettinger, S. N., Harbison, C., Dorange, C., Finckenstein, F. G., & Brahmer, J. R. (2015). Phase iii, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 33(18_suppl), LBA109. https://doi.org/10.1200/jco.2015.33.18_suppl.lba109

Pérez-Ruiz, E., Melero, I., Kopecka, J., Sarmento-Ribeiro, A. B., García-Aranda, M., & De Las Rivas, J. (2020). Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resistance Updates, 53, 100718. https://doi.org/10.1016/j.drup.2020.100718

Rodriguez-Abreu, D., Johnson, M. L., Hussein, M. A., Cobo, M., Patel, A. J., Secen, N. M., Lee, K. H., Massuti, B., Hiret, S., Yang, J. C.-H., Barlesi, F., Lee, D. H., Paz-Ares, L. G., Hsieh, R. W., Miller, K., Patil, N., Twomey, P., Kapp, A. V., Meng, R., & Cho, B. C. (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with pd-l1-selected NSCLC (CITYSCAPE). Journal of Clinical Oncology, 38(15_suppl), 9503. https://doi.org/10.1200/jco.2020.38.15_suppl.9503

Sauls, R. S., McCausland, C., & Taylor, B. N. (2023). Histology, T-Cell Lymphocyte. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK535433/

Tagliamento, M., Agostinetto, E., Borea, R., Brandão, M., Poggio, F., Addeo, A., & Lambertini, M. (2021). VISTA: A promising target for cancer immunotherapy? ImmunoTargets and Therapy, Volume 10, 185-200. https://doi.org/10.2147/itt.s260429

Toor, S. M., Sasidharan Nair, V., Decock, J., & Elkord, E. (2020). Immune checkpoints in the tumor microenvironment. Seminars in Cancer Biology, 65, 1-12. https://doi.org/10.1016/j.semcancer.2019.06.021

Treatment Choices for Non-Small Cell Lung Cancer, by Stage. (2024). American Cancer Society. https://www.cancer.org/cancer/types/lung-cancer/treating-non-small-cell/by-stage.html

Villarroel-Espindola, F., Yu, X., Datar, I., Mani, N., Sanmamed, M., Velcheti, V., Syrigos, K., Toki, M., Zhao, H., Chen, L., Herbst, R. S., & Schalper, K. A. (2018). Spatially resolved and quantitative analysis of vista/pd-1h as a novel immunotherapy target in human non–small cell lung cancer. Clinical Cancer Research, 24(7), 1562-1573. https://doi.org/10.1158/1078-0432.ccr-17-2542

Vugmeyster, Y., Wilkins, J., Koenig, A., El Bawab, S., Dussault, I., Ojalvo, L. S., De Banerjee, S., Klopp‐Schulze, L., & Khandelwal, A. (2020). Selection of the recommended phase 2 dose for bintrafusp alfa, a bifunctional fusion protein targeting tgf‐β and pd‐l1. Clinical Pharmacology & Therapeutics, 108(3), 566-574. https://doi.org/10.1002/ cpt.1776

Wang, X., Niu, X., An, N., Sun, Y., & Chen, Z. (2021). Comparative efficacy and safety of immunotherapy alone and in combination with chemotherapy for advanced non-small cell lung cancer. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.611012

Zhang, N., Zeng, Y., Du, W., Zhu, J., Shen, D., Liu, Z., & Huang, J.-A. (2016). The EGFR pathway is involved in the regulation of pd-l1 expression via the il-6/jak/stat3 signaling pathway in egfr-mutated non-small cell lung cancer. International Journal of Oncology, 49(4), 1360-1368. https://doi.org/10.3892/ijo.2016.3632

Zhou, S., & Yang, H. (2023). Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1129465

Zhu, C., Anderson, A. C., & Kuchroo, V. K. (2010). TIM-3 and its regulatory role in immune responses. Current Topics in Microbiology and Immunology, 1-15. https://doi.org/10.1007/82_2010_84

Published

11-30-2024

How to Cite

Thatikonda, S., Kethar, J., Parajuli, P., & Torremocha, V. (2024). Exploring New Strategies to Overcome Immunotherapy Resistance in Non-Small Cell Lung Cancer . Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8260

Issue

Section

HS Review Articles