Systematic Review on Recent Challenges in Artificial Skin for Sensory Feedback in Hand Prosthetics
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8219Keywords:
hand prosthetic, artificial skin, sensory feedbackAbstract
The development of sensory feedback through artificial skin holds significant technological challenges, despite the importance of bidirectionality in hand prosthetics. This systematic review examines recent advancements and the remaining hurdles in creating artificial skin that can provide realistic sensory feedback in modern hand prosthetics. The sensory mechanisms, which detect stimuli and translate them into a coherent signal for the device, include triboelectric nanogenerators, piezoelectric pressure sensors, and hydrogel skin simulators. The feedback mechanisms, which transmit these signals to the user, include transcutaneous electrical nerve stimulation, haptic feedback, and intraneural stimulation. Having compiled a series of recent developments in artificial skin and sensory feedback, it will provide an overview of challenges in sensory and feedback mechanisms. On top of individual problems with each mechanism ranging from manufacturing difficulty to scalability, the review found that the lack of research and development is likely due to the novelty of sensory feedback in prosthetic devices. The review evaluated the feasibility and potential of integrating these technologies into practical, user-friendly prosthetic hands, demonstrating the need for scalable, efficient solutions to enhance user comfort and functionality.
Downloads
References or Bibliography
Amputee Coalition. (n.d.). Limb Loss Definitions. National Limb Loss Resource Center. Retrieved May 4, 2024, from https://www.amputee-coalition.org/resources/limb-loss-definitions/
Assaf, T. (2022). Assessing a new Frequency Modulation architecture for artificial large area skin-like sensory array deployment in robotic platforms. Array, 16, 100252. https://doi.org/10.1016/j.array.2022.100252
Campanelli, A., Tiboni, M., Verite, F., Saudrais, C., Mick, S., & Jarrasse, N. (2024). Innovative Multi Vibrotactile-Skin Stretch (MuViSS) haptic device for sensory motor feedback from a robotic prosthetic hand—ScienceDirect. Mechatronics, 99. https://doi.org/10.1016/j.mechatronics.2024.103161
Cheesborough, J. E., Smith, L. H., Kuiken, T. A., & Dumanian, G. A. (2015). Targeted Muscle Reinnervation and Advanced Prosthetic Arms. Seminars in Plastic Surgery, 29(1), 62–72. https://doi.org/10.1055/s-0035-1544166
Christie, B., Osborn, L. E., McMullen, D. P., Pawar, A. S., Thomas, T. M., Bensmaia, S. J., Celnik, P. A., Fifer, M. S., & Tenore, F. V. (2022). Perceived timing of cutaneous vibration and intracortical microstimulation of human somatosensory cortex. Brain Stimulation, 15(3), 881–888. https://doi.org/10.1016/j.brs.2022.05.015
Cimolato, A., Ciotti, F., Kljajic, J., Valle, G., & Raspopovic, S. (2023). Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience, 26(3). https://doi.org/10.1016/j.isci.2023.106248
Cutipa-Puma, D. R., Coaguila-Quispe, C. G., & Yanyachi, P. R. (2023). A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX, 14, e00439. https://doi.org/10.1016/j.ohx.2023.e00439
Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile Sensing—From Humans to Humanoids. IEEE Transactions on Robotics, 26(1), 1–20. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2009.2033627
Fillauer LLC. (n.d.). Motion Control Hand. Motion Control Hand. Retrieved June 8, 2024, from https://fillauer.com/products/motion-control-hand/
Goldstein, E. B. (2010). Sensation and Perception (8th ed.). Wadsworth.
Hajra, S., Panda, S., Khanberh, H., Vivekananthan, V., Chamanehpour, E., Mishra, Y. K., & Kim, H. J. (2023). Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano Energy, 115, 108729. https://doi.org/10.1016/j.nanoen.2023.108729
Han, M. S., & Harnett, C. K. (2024). Journey from human hands to robot hands: Biological inspiration of anthropomorphic robotic manipulators. Bioinspiration & Biomimetics, 19(2), 021001. https://doi.org/10.1088/1748-3190/ad262c
Hancock, E. (1995, April). Johns Hopkins Magazine. https://pages.jh.edu/jhumag/495web/touch.html
Khan, A., Li, K., Nataraj, R., & Wei, N. (2024). Effects of transcutaneous electrical nerve stimulation on evoked tactile sensation for fingertip force control. Biomedical Signal Processing and Control, 87, 105568. https://doi.org/10.1016/j.bspc.2023.105568
Kyberd, P. J., Findlayson, D., Jayasuriya, M., & Chibante, F. (2022). A Strengthened and Sensorised Custom Silicone Glove for use with an Intelligent Prosthetic Hand. Medical Engineering & Physics, 107. https://doi.org/10.1016/j.medengphy.2022.103845
Lai, Y.-C., Liu, R., Xu, M., & Zhao, C. (2023). Triboelectric Nanogenerators for Electronic and Robotic Skins. In Handbook of Triboelectric Nanogenerators (pp. 1877–1928). https://link.springer.com/referenceworkentry/10.1007/978-3-031-28111-2_53
Lundström, R., Dahlqvist, H., Hagberg, M., & Nilsson, T. (2018). Vibrotactile and thermal perception and its relation to finger skin thickness. Clinical Neurophysiology Practice, 3, 33–39. https://doi.org/10.1016/j.cnp.2018.01.001
Marinelli, A., Boccardo, N., Tessari, F., Domenico, D. D., Caserta, G., Canepa, M., Gini, G., Barresi, G., Laffranchi, M., & Michieli, L. D. (2023). Active upper limb prostheses: A review on current state and upcoming breakthroughs. Progress in Biomedical Engineering, 5(1). https://doi.org/10.1088/2516-1091/acac57
Ossur. (n.d.). I-Limb® Ultra | Prosthetic Bionic Hand. Retrieved August 4, 2024, from https://www.ossur.com/en-gb/prosthetics/arms/i-limb-ultra
Ottobock. (n.d.). MyoHand VariPlus Speed | Myo Terminal Devices. Ottobock US Shop. Retrieved June 8, 2024, from https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/Myo-Hands-and-Components/Myo-Terminal-Devices/MyoHand-VariPlus-Speed/p/8E38~59
Parida, K., Bark, H., & Pooi, S. L. (2021). Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 31(39), 2007952. https://doi.org/10.1002/adfm.202007952
Risso, G., Preatoni, G., Valle, G., Marazzi, M., Bracher, N. M., & Raspopovic, S. (2022). Multisensory stimulation decreases phantom limb distortions and is optimally integrated. iScience, 25(4). https://doi.org/10.1016/j.isci.2022.104129
Shaner, S. W., Islam, M., Kristoffersen, M. B., Azmi, R., Heissler, S., Ortiz-Catalan, M., Korvink, J. G., & Asplund, M. (2022). Skin stimulation and recording: Moving towards metal-free electrodes. Biosensors and Bioelectronics: X, 11, 100143. https://doi.org/10.1016/j.biosx.2022.100143
Starke, J., Weiner, P., Crell, M., & Asfour, T. (2022). Semi-autonomous control of prosthetic hands based on multimodal sensing, human grasp demonstration and user intention. Robotics and Autonomous Systems, 154. https://doi.org/10.1016/j.robot.2022.104123
Swaminathan, A., Vermulapalli, S., Patel, M. R., & Jones, W. S. (2014). Lower extremity amputation in peripheral artery disease: Improving patient outcomes. Vascular Health and Risk Management, 10, 417–424. https://doi.org/10.2147/VHRM.S50588
TASKA. (n.d.). TASKA CX. TASKA. Retrieved June 8, 2024, from https://www.taskaprosthetics.com/products/taska-cx
Tropf, J. G., & Potter, B. K. (2023). Osseointegration for amputees: Current state of direct skeletal attachment of prostheses. Orthoplastic Surgery, 12, 20–28. https://doi.org/10.1016/j.orthop.2023.05.004
Valle, G., Aiello, G., Ciotti, F., Cvancara, P., Martinovic, T., Navarro, X., Stieglitz, T., Bumbasirevic, M., & Raspopovic, S. (2022). Multifaceted understanding of human nerve implants to design optimized electrodes for bioelectronics. Biomaterials, 291. https://doi.org/10.1016/j.biomaterials.2022.121874
Valle, G., Petrini, F. M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., Controzzi, M., Cipriani, C., Stieglitz, T., Rossini, P. M., Mazzoni, A., Raspopovic, S., & Micera, S. (2018). Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Scientific Reports, 8(1), 16666. https://doi.org/10.1038/s41598-018-34910-w
Wei, X., Li, H., Yue, W., Gao, S., Chen, Z., Li, Y., & Shen, G. (2022). A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, 5(5), 1481–1501. https://doi.org/10.1016/j.matt.2022.02.016
Yichen, H., Huimin, H., Yufeng, Z., Hongliang, S., Yi, Z., Yinping, L., Lei, L., & Xing, W. (2022). A Transcutaneous Electrical Stimulation Method for Sensory Substitution of Wrist Extension and Flexion—A preliminary study. Procedia Computer Science, 209, 12–22. https://doi.org/10.1016/j.procs.2022.10.094
Published
How to Cite
Issue
Section
Copyright (c) 2024 Jasper Yuan; James Marchant

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


