Systematic Review on Recent Challenges in Artificial Skin for Sensory Feedback in Hand Prosthetics

Authors

  • Jasper Yuan Merivale High School
  • James Marchant

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8219

Keywords:

hand prosthetic, artificial skin, sensory feedback

Abstract

The development of sensory feedback through artificial skin holds significant technological challenges, despite the importance of bidirectionality in hand prosthetics. This systematic review examines recent advancements and the remaining hurdles in creating artificial skin that can provide realistic sensory feedback in modern hand prosthetics. The sensory mechanisms, which detect stimuli and translate them into a coherent signal for the device, include triboelectric nanogenerators, piezoelectric pressure sensors, and hydrogel skin simulators. The feedback mechanisms, which transmit these signals to the user, include transcutaneous electrical nerve stimulation, haptic feedback, and intraneural stimulation. Having compiled a series of recent developments in artificial skin and sensory feedback, it will provide an overview of challenges in sensory and feedback mechanisms. On top of individual problems with each mechanism ranging from manufacturing difficulty to scalability, the review found that the lack of research and development is likely due to the novelty of sensory feedback in prosthetic devices. The review evaluated the feasibility and potential of integrating these technologies into practical, user-friendly prosthetic hands, demonstrating the need for scalable, efficient solutions to enhance user comfort and functionality.

Downloads

Download data is not yet available.

References or Bibliography

Amputee Coalition. (n.d.). Limb Loss Definitions. National Limb Loss Resource Center. Retrieved May 4, 2024, from https://www.amputee-coalition.org/resources/limb-loss-definitions/

Assaf, T. (2022). Assessing a new Frequency Modulation architecture for artificial large area skin-like sensory array deployment in robotic platforms. Array, 16, 100252. https://doi.org/10.1016/j.array.2022.100252

Campanelli, A., Tiboni, M., Verite, F., Saudrais, C., Mick, S., & Jarrasse, N. (2024). Innovative Multi Vibrotactile-Skin Stretch (MuViSS) haptic device for sensory motor feedback from a robotic prosthetic hand—ScienceDirect. Mechatronics, 99. https://doi.org/10.1016/j.mechatronics.2024.103161

Cheesborough, J. E., Smith, L. H., Kuiken, T. A., & Dumanian, G. A. (2015). Targeted Muscle Reinnervation and Advanced Prosthetic Arms. Seminars in Plastic Surgery, 29(1), 62–72. https://doi.org/10.1055/s-0035-1544166

Christie, B., Osborn, L. E., McMullen, D. P., Pawar, A. S., Thomas, T. M., Bensmaia, S. J., Celnik, P. A., Fifer, M. S., & Tenore, F. V. (2022). Perceived timing of cutaneous vibration and intracortical microstimulation of human somatosensory cortex. Brain Stimulation, 15(3), 881–888. https://doi.org/10.1016/j.brs.2022.05.015

Cimolato, A., Ciotti, F., Kljajic, J., Valle, G., & Raspopovic, S. (2023). Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience, 26(3). https://doi.org/10.1016/j.isci.2023.106248

Cutipa-Puma, D. R., Coaguila-Quispe, C. G., & Yanyachi, P. R. (2023). A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX, 14, e00439. https://doi.org/10.1016/j.ohx.2023.e00439

Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile Sensing—From Humans to Humanoids. IEEE Transactions on Robotics, 26(1), 1–20. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2009.2033627

Fillauer LLC. (n.d.). Motion Control Hand. Motion Control Hand. Retrieved June 8, 2024, from https://fillauer.com/products/motion-control-hand/

Goldstein, E. B. (2010). Sensation and Perception (8th ed.). Wadsworth.

Hajra, S., Panda, S., Khanberh, H., Vivekananthan, V., Chamanehpour, E., Mishra, Y. K., & Kim, H. J. (2023). Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano Energy, 115, 108729. https://doi.org/10.1016/j.nanoen.2023.108729

Han, M. S., & Harnett, C. K. (2024). Journey from human hands to robot hands: Biological inspiration of anthropomorphic robotic manipulators. Bioinspiration & Biomimetics, 19(2), 021001. https://doi.org/10.1088/1748-3190/ad262c

Hancock, E. (1995, April). Johns Hopkins Magazine. https://pages.jh.edu/jhumag/495web/touch.html

Khan, A., Li, K., Nataraj, R., & Wei, N. (2024). Effects of transcutaneous electrical nerve stimulation on evoked tactile sensation for fingertip force control. Biomedical Signal Processing and Control, 87, 105568. https://doi.org/10.1016/j.bspc.2023.105568

Kyberd, P. J., Findlayson, D., Jayasuriya, M., & Chibante, F. (2022). A Strengthened and Sensorised Custom Silicone Glove for use with an Intelligent Prosthetic Hand. Medical Engineering & Physics, 107. https://doi.org/10.1016/j.medengphy.2022.103845

Lai, Y.-C., Liu, R., Xu, M., & Zhao, C. (2023). Triboelectric Nanogenerators for Electronic and Robotic Skins. In Handbook of Triboelectric Nanogenerators (pp. 1877–1928). https://link.springer.com/referenceworkentry/10.1007/978-3-031-28111-2_53

Lundström, R., Dahlqvist, H., Hagberg, M., & Nilsson, T. (2018). Vibrotactile and thermal perception and its relation to finger skin thickness. Clinical Neurophysiology Practice, 3, 33–39. https://doi.org/10.1016/j.cnp.2018.01.001

Marinelli, A., Boccardo, N., Tessari, F., Domenico, D. D., Caserta, G., Canepa, M., Gini, G., Barresi, G., Laffranchi, M., & Michieli, L. D. (2023). Active upper limb prostheses: A review on current state and upcoming breakthroughs. Progress in Biomedical Engineering, 5(1). https://doi.org/10.1088/2516-1091/acac57

Ossur. (n.d.). I-Limb® Ultra | Prosthetic Bionic Hand. Retrieved August 4, 2024, from https://www.ossur.com/en-gb/prosthetics/arms/i-limb-ultra

Ottobock. (n.d.). MyoHand VariPlus Speed | Myo Terminal Devices. Ottobock US Shop. Retrieved June 8, 2024, from https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/Myo-Hands-and-Components/Myo-Terminal-Devices/MyoHand-VariPlus-Speed/p/8E38~59

Parida, K., Bark, H., & Pooi, S. L. (2021). Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 31(39), 2007952. https://doi.org/10.1002/adfm.202007952

Risso, G., Preatoni, G., Valle, G., Marazzi, M., Bracher, N. M., & Raspopovic, S. (2022). Multisensory stimulation decreases phantom limb distortions and is optimally integrated. iScience, 25(4). https://doi.org/10.1016/j.isci.2022.104129

Shaner, S. W., Islam, M., Kristoffersen, M. B., Azmi, R., Heissler, S., Ortiz-Catalan, M., Korvink, J. G., & Asplund, M. (2022). Skin stimulation and recording: Moving towards metal-free electrodes. Biosensors and Bioelectronics: X, 11, 100143. https://doi.org/10.1016/j.biosx.2022.100143

Starke, J., Weiner, P., Crell, M., & Asfour, T. (2022). Semi-autonomous control of prosthetic hands based on multimodal sensing, human grasp demonstration and user intention. Robotics and Autonomous Systems, 154. https://doi.org/10.1016/j.robot.2022.104123

Swaminathan, A., Vermulapalli, S., Patel, M. R., & Jones, W. S. (2014). Lower extremity amputation in peripheral artery disease: Improving patient outcomes. Vascular Health and Risk Management, 10, 417–424. https://doi.org/10.2147/VHRM.S50588

TASKA. (n.d.). TASKA CX. TASKA. Retrieved June 8, 2024, from https://www.taskaprosthetics.com/products/taska-cx

Tropf, J. G., & Potter, B. K. (2023). Osseointegration for amputees: Current state of direct skeletal attachment of prostheses. Orthoplastic Surgery, 12, 20–28. https://doi.org/10.1016/j.orthop.2023.05.004

Valle, G., Aiello, G., Ciotti, F., Cvancara, P., Martinovic, T., Navarro, X., Stieglitz, T., Bumbasirevic, M., & Raspopovic, S. (2022). Multifaceted understanding of human nerve implants to design optimized electrodes for bioelectronics. Biomaterials, 291. https://doi.org/10.1016/j.biomaterials.2022.121874

Valle, G., Petrini, F. M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., Controzzi, M., Cipriani, C., Stieglitz, T., Rossini, P. M., Mazzoni, A., Raspopovic, S., & Micera, S. (2018). Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Scientific Reports, 8(1), 16666. https://doi.org/10.1038/s41598-018-34910-w

Wei, X., Li, H., Yue, W., Gao, S., Chen, Z., Li, Y., & Shen, G. (2022). A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, 5(5), 1481–1501. https://doi.org/10.1016/j.matt.2022.02.016

Yichen, H., Huimin, H., Yufeng, Z., Hongliang, S., Yi, Z., Yinping, L., Lei, L., & Xing, W. (2022). A Transcutaneous Electrical Stimulation Method for Sensory Substitution of Wrist Extension and Flexion—A preliminary study. Procedia Computer Science, 209, 12–22. https://doi.org/10.1016/j.procs.2022.10.094

Published

11-30-2024

How to Cite

Yuan, J., & Marchant, J. (2024). Systematic Review on Recent Challenges in Artificial Skin for Sensory Feedback in Hand Prosthetics. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8219

Issue

Section

HS Review Articles