Potential Solution to the Plastic Plague
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8217Keywords:
Plastic Pollution, Nanoparticles, Microorganisms, Plastic Degradation, PolymersAbstract
In the past 117 years since the first plastic was created, the advancements leading up to today were very significant and beneficial for humanity, however, at the expense of our environment. Two probable solutions to plastic pollution are discussed in this paper: microorganisms and nanoparticles (NPs). Microorganisms essentially use three steps to degrade plastic, first they attach to the polymer, then use it as the carbon source, finally degrading the polymer. Aerobic and anaerobic biodegradation are two different types of methods that microorganisms use; this leads to a difference in products when polymers are degraded. Aerobic biodegradation generally has products like carbon dioxide (CO₂) and water (H₂O), while anaerobic has a very large variety of different compounds. Three bacteria were found to be the most efficient, Bacillus subtilis ATCC 21332, Comamonas acidovorans TB-35, and Gloeophyllum trabeum. Between the two methods of plastic degradation, microorganisms are natural with less potentially harmful byproducts during the process of biodegradation. However, microorganisms are slower to degrade compared to NPs, as they use living bacteria. NPs use different coatings to enhance their process of plastic degradation, helping with the process of chemical reactions to degrade the polymer. Titania Nanoparticles (TiO2 NPs) and Silver Nanoparticles (Ag NPs) were found to be among the most efficient with 68% to 200 hours and 64.5% to 840 hours, respectively. NPs is a better solution to invest in than microorganisms as it is faster and more efficient, with more research the harmful byproducts may be mitigated.
Downloads
References or Bibliography
Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67. https://doi.org/10.1128/aem.64.1.62-67.1998
Alshehrei, F. (2017). Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology, 5(1), 8–19. https://doi.org/10.12691/jaem-5-1-2
Amato-Lourenço, L. F., Carvalho-Oliveira, R., Júnior, G. R., Galvão, L. D. S., Ando, R. A., & Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials, 416, 126124. https://doi.org/10.1016/j.jhazmat.2021.126124
Bátori, V., Åkesson, D., Zamani, A., Taherzadeh, M. J., & Horváth, I. S. (2018). Anaerobic degradation of bioplastics: A review. Waste Management, 80, 406–413. https://doi.org/10.1016/j.wasman.2018.09.040
Brandon, A. M., Gao, S.-H., Tian, R., Ning, D., Yang, S.-S., Zhou, J., Wu, W.-M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel,Mytilus edulis(L.). Environmental Science & Technology, 42(13), 5026–5031. https://doi.org/10.1021/es800249a
Dolez, P. I. (2015). Nanomaterials Definitions, Classifications, and Applications. In Elsevier eBooks (pp. 3–40). https://doi.org/10.1016/b978-0-444-62747-6.00001-4
Iroegbu, A. O. C., Ray, S. S., Mbarane, V., Bordado, J. C., & Sardinha, J. P. (2021). Plastic pollution: A perspective on matters arising: Challenges and opportunities. ACS Omega, 6(30), 19343–19355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340096/
Jayaprakash, V., & Palempalli, U. M. D. (2018). Studying the effect of biosilver nanoparticles on polyethylene degradation. Applied Nanoscience, 9(4), 491–504. https://doi.org/10.1007/s13204-018-0922-6
Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry. PLOS ONE, 10(7), e0131773. https://doi.org/10.1371/journal.pone.0131773
Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. (2020). The United States’ contribution of plastic waste to land and ocean. Science Advances, 6(44). https://doi.org/10.1126/sciadv.abd0288
Leslie, H. A., J. M. van Velzen, M., Brandsma, S. H., Vethaak, D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163(107199), 107199. https://doi.org/10.1016/j.envint.2022.107199
Michaud, L., Di Marco, G., Bruni, V., & Lo Giudice, A. (2007). Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin, 54(11), 1754–1761. https://doi.org/10.1016/j.marpolbul.2007.07.011
Moore, C. J., Moore, S. L., Weisberg, S. B., Lattin, G. L., & Zellers, A. F. (2002). A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Marine Pollution Bulletin, 44(10), 1035–1038. https://doi.org/10.1016/s0025-326x(02)00150-9
Pol, V. G., & Thiyagarajan, P. (2010). Remediating plastic waste into carbon nanotubes. J. Environ. Monit., 12(2), 455–459. https://doi.org/10.1039/b914648b
Priyanka, N., & Archana, T. (2011). Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02). https://doi.org/10.4172/2161-0525.1000111
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146(106274), 106274. https://doi.org/10.1016/j.envint.2020.106274
Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., Swartz, N. A., & Mellies, J. L. (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. MSphere, 5(6). https://doi.org/10.1128/mSphere.01151-20
Ryan, P. G., Moore, C. J., van Franeker, J. A., & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999–2012. https://doi.org/10.1098/rstb.2008.0207
Sudhakar, M., Priyadarshini, C., Doble, M., Murthy, P. S., & Venkatesan, R. (2007). Marine bacteria mediated degradation of nylon 66 and 6. International Biodeterioration & Biodegradation, 60(3), 144–151. https://doi.org/10.1016/j.ibiod.2007.02.002
Tan, F. T., Cooper, D. G., Marić, M., & Nicell, J. A. (2008). Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polymer Degradation and Stability, 93(8), 1479–1485. https://doi.org/10.1016/j.polymdegradstab.2008.05.005
Thomas, R. T., & Sandhyarani, N. (2013). Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Advances, 3(33), 14080. https://doi.org/10.1039/c3ra42226g
Wu, R. T., Cai, Y. F., Chen, Y. X., Yang, Y. W., Xing, S. C., & Liao, X. D. (2021). Occurrence of microplastic in livestock and poultry manure in South China. Environmental Pollution, 277, 116790. https://doi.org/10.1016/j.envpol.2021.116790
Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2), 323–327. https://doi.org/10.1016/s0141-3910(01)00027-1
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A Bacterium That Degrades and Assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359
Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/10.1016/j.jksus.2021.101538
Published
How to Cite
Issue
Section
Copyright (c) 2024 Manreev Sangha; Virgel Torremocha, Kristina Lilova, Jothsna Kethar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


