Potential Solution to the Plastic Plague

Authors

  • Manreev Sangha Neuqua Valley High School
  • Virgel Torremocha Gifted Gabber
  • Kristina Lilova Gifted Gabber
  • Jothsna Kethar Gifted Gabber

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8217

Keywords:

Plastic Pollution, Nanoparticles, Microorganisms, Plastic Degradation, Polymers

Abstract

In the past 117 years since the first plastic was created, the advancements leading up to today were very significant and beneficial for humanity, however, at the expense of our environment. Two probable solutions to plastic pollution are discussed in this paper: microorganisms and nanoparticles (NPs). Microorganisms essentially use three steps to degrade plastic, first they attach to the polymer, then use it as the carbon source, finally degrading the polymer. Aerobic and anaerobic biodegradation are two different types of methods that microorganisms use; this leads to a difference in products when polymers are degraded. Aerobic biodegradation generally has products like carbon dioxide (CO₂) and water (H₂O), while anaerobic has a very large variety of different compounds. Three bacteria were found to be the most efficient, Bacillus subtilis ATCC 21332, Comamonas acidovorans TB-35, and Gloeophyllum trabeum. Between the two methods of plastic degradation, microorganisms are natural with less potentially harmful byproducts during the process of biodegradation. However, microorganisms are slower to degrade compared to NPs, as they use living bacteria. NPs use different coatings to enhance their process of plastic degradation, helping with the process of chemical reactions to degrade the polymer. Titania Nanoparticles (TiO2 NPs) and Silver Nanoparticles (Ag NPs) were found to be among the most efficient with 68% to 200 hours and 64.5% to 840 hours, respectively. NPs is a better solution to invest in than microorganisms as it is faster and more efficient, with more research the harmful byproducts may be mitigated.

Downloads

Download data is not yet available.

Author Biographies

Virgel Torremocha, Gifted Gabber

Virgel Torremocha, University of Southeastern Philippines

Kristina Lilova, Gifted Gabber

Dr.Kristina Lilova, Research Assistant Professor at Arizona State University

References or Bibliography

Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67. https://doi.org/10.1128/aem.64.1.62-67.1998

Alshehrei, F. (2017). Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology, 5(1), 8–19. https://doi.org/10.12691/jaem-5-1-2

Amato-Lourenço, L. F., Carvalho-Oliveira, R., Júnior, G. R., Galvão, L. D. S., Ando, R. A., & Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials, 416, 126124. https://doi.org/10.1016/j.jhazmat.2021.126124

Bátori, V., Åkesson, D., Zamani, A., Taherzadeh, M. J., & Horváth, I. S. (2018). Anaerobic degradation of bioplastics: A review. Waste Management, 80, 406–413. https://doi.org/10.1016/j.wasman.2018.09.040

Brandon, A. M., Gao, S.-H., Tian, R., Ning, D., Yang, S.-S., Zhou, J., Wu, W.-M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301

Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel,Mytilus edulis(L.). Environmental Science & Technology, 42(13), 5026–5031. https://doi.org/10.1021/es800249a

Dolez, P. I. (2015). Nanomaterials Definitions, Classifications, and Applications. In Elsevier eBooks (pp. 3–40). https://doi.org/10.1016/b978-0-444-62747-6.00001-4

Iroegbu, A. O. C., Ray, S. S., Mbarane, V., Bordado, J. C., & Sardinha, J. P. (2021). Plastic pollution: A perspective on matters arising: Challenges and opportunities. ACS Omega, 6(30), 19343–19355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340096/

Jayaprakash, V., & Palempalli, U. M. D. (2018). Studying the effect of biosilver nanoparticles on polyethylene degradation. Applied Nanoscience, 9(4), 491–504. https://doi.org/10.1007/s13204-018-0922-6

Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry. PLOS ONE, 10(7), e0131773. https://doi.org/10.1371/journal.pone.0131773

Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. (2020). The United States’ contribution of plastic waste to land and ocean. Science Advances, 6(44). https://doi.org/10.1126/sciadv.abd0288

Leslie, H. A., J. M. van Velzen, M., Brandsma, S. H., Vethaak, D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163(107199), 107199. https://doi.org/10.1016/j.envint.2022.107199

Michaud, L., Di Marco, G., Bruni, V., & Lo Giudice, A. (2007). Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin, 54(11), 1754–1761. https://doi.org/10.1016/j.marpolbul.2007.07.011

Moore, C. J., Moore, S. L., Weisberg, S. B., Lattin, G. L., & Zellers, A. F. (2002). A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Marine Pollution Bulletin, 44(10), 1035–1038. https://doi.org/10.1016/s0025-326x(02)00150-9

Pol, V. G., & Thiyagarajan, P. (2010). Remediating plastic waste into carbon nanotubes. J. Environ. Monit., 12(2), 455–459. https://doi.org/10.1039/b914648b

Priyanka, N., & Archana, T. (2011). Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02). https://doi.org/10.4172/2161-0525.1000111

Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146(106274), 106274. https://doi.org/10.1016/j.envint.2020.106274

Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., Swartz, N. A., & Mellies, J. L. (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. MSphere, 5(6). https://doi.org/10.1128/mSphere.01151-20

Ryan, P. G., Moore, C. J., van Franeker, J. A., & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999–2012. https://doi.org/10.1098/rstb.2008.0207

Sudhakar, M., Priyadarshini, C., Doble, M., Murthy, P. S., & Venkatesan, R. (2007). Marine bacteria mediated degradation of nylon 66 and 6. International Biodeterioration & Biodegradation, 60(3), 144–151. https://doi.org/10.1016/j.ibiod.2007.02.002

Tan, F. T., Cooper, D. G., Marić, M., & Nicell, J. A. (2008). Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polymer Degradation and Stability, 93(8), 1479–1485. https://doi.org/10.1016/j.polymdegradstab.2008.05.005

Thomas, R. T., & Sandhyarani, N. (2013). Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Advances, 3(33), 14080. https://doi.org/10.1039/c3ra42226g

Wu, R. T., Cai, Y. F., Chen, Y. X., Yang, Y. W., Xing, S. C., & Liao, X. D. (2021). Occurrence of microplastic in livestock and poultry manure in South China. Environmental Pollution, 277, 116790. https://doi.org/10.1016/j.envpol.2021.116790

Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2), 323–327. https://doi.org/10.1016/s0141-3910(01)00027-1

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A Bacterium That Degrades and Assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359

Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/10.1016/j.jksus.2021.101538

Published

11-30-2024

How to Cite

Sangha, M., Torremocha, V. ., Lilova, K., & Kethar, J. (2024). Potential Solution to the Plastic Plague . Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8217

Issue

Section

HS Research Articles