Observing the Effects of Marine Debris Bioaccumulation and Biomagnification
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8204Keywords:
Marine Debris, Microplastic, Heavy Metal, Bioaccumulation, BiomagnificationAbstract
Marine debris in the ocean is a complex problem to tackle due to its multifaceted nature. Amongst the various forms of marine debris, microplastics, and heavy metals are often the focus of research due to their pervasive and toxic nature within the marine environment. Plastics, being lightweight, are frequently carried around by the ocean currents on the ocean surface. During transit, plastics often break down into smaller forms known as microplastics. These microplastics, small enough to be digested by marine wildlife, often attract toxic chemicals and are introduced into the food web. On the other hand, heavy metals are water soluble, toxic, and dense. As such, they don’t travel far from their source of origin unless subject to a strong water current. Due to their soluble nature, they are easily introduced into the biological systems of marine wildlife. Once inside, they stubbornly remain in the body and accumulate until they reach lethal levels or their host is consumed by a predator. Both microplastics and heavy metals pose a serious threat to not only the marine ecosystem but also to other systems that interact with the ocean in any form. An understanding of microplastic and heavy metal marine debris and their effects on the trophic chain is essential in fixing this waste problem.
Downloads
References or Bibliography
Reference
Abdallah, M. A. (2023). Bioaccumulation and biomagnifications of toxic metals in tissues of loggerhead turtles (Caretta caretta) from the Mediterranean Sea coast, Egypt. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33972-9
Al-Zawaidah, H., Ravazzolo, D., & Friedrich, H. (2021). Macroplastics in rivers: Present knowledge, issues and challenges. Environmental Science: Processes & Impacts, 23(4), 535–552. https://doi.org/10.1039/d0em00517g
Altindağ, A., & Yiğit, S. (2005). Assessment of heavy metal concentrations in the food web of lake Beyşehir, Turkey. Chemosphere, 60(4), 552–556. https://doi.org/10.1016/j.chemosphere.2005.01.009
Bonefeld-Jørgensen, E. C., Long, M., Hofmeister, M. V., & Vinggaard, A. M. (2007). Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro : New Data and A brief review. Environmental Health Perspectives, 115(Suppl 1), 69–76. https://doi.org/10.1289/ehp.9368
Borgå, K., Fisk, A. T., Hoekstra, P. F., & Muir, D. C. (2004). Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environmental Toxicology and Chemistry, 23(10), 2367–2385. https://doi.org/10.1897/03-518
Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the Marine Environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003
Chae, Y., Kim, D., Kim, S. W., & An, Y.-J. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18849-y
Cole, M., & Galloway, T. S. (2015). Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environmental Science & Technology, 49(24), 14625–14632. https://doi.org/10.1021/acs.est.5b04099
Dobrzyńska M. M. (2016). Phthalates - widespread occurrence and the effect on male gametes. Part 2. The effects of phthalates on male gametes and on the offspring. Roczniki Panstwowego Zakladu Higieny, 67(3), 209–221.
Duffus, J. H. (2016). “heavy metals”—a meaningless term? IUPAC Standards Online. https://doi.org/10.1515/iupac.74.0076
Duncan, E. M.; Broderick, A. C.; Fuller, W. J.; Galloway, T. S.; Godfrey, M. H.; Hamann, M.; Limpus, C. J.; Lindeque, P. K.; Mayes, A. G.; Omeyer, L. C. M.; Santillo, D.; Snape, R. T. E.; Godley, B. J. Microplastic Ingestion Ubiquitous in Marine Turtles. Glob. Change Biol. 2019, 25 (2), 744– 752, DOI: 10.1111/gcb.14519
Efferth, T., & Paul, N. W. (2017). Threats to human health by Great Ocean Garbage Patches. The Lancet Planetary Health, 1(8). https://doi.org/10.1016/s2542-5196(17)30140-7
Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the Ocean. Environmental Science & Technology, 46(22), 12302–12315. https://doi.org/10.1021/es3027105
Everaert, G., De Rijcke, M., Lonneville, B., Janssen, C. R., Backhaus, T., Mees, J., van Sebille, E., Koelmans, A. A., Catarino, A. I., & Vandegehuchte, M. B. (2020). Risks of floating microplastic in the Global Ocean. Environmental Pollution, 267, 115499. https://doi.org/10.1016/j.envpol.2020.115499
FICCI, Potential of Plastics Industry in Northern India with Sepacial Focus on Pasticulture and Food Processing - 2014: A Report on Plastic Inudstry, 2014
Gunaalan, K., Nielsen, T. G., Rodríguez Torres, R., Lorenz, C., Vianello, A., Andersen, C. A., Vollertsen, J., & Almeda, R. (2023). Is zooplankton an entry point of microplastics into the Marine Food Web? Environmental Science & Technology, 57(31), 11643–11655. https://doi.org/10.1021/acs.est.3c02575
Hammer, S., Nager, R. G., Johnson, P. C. D., Furness, R. W., & Provencher, J. F. (2016). Plastic debris in great skua (stercorarius skua) pellets corresponds to seabird prey species. Marine Pollution Bulletin, 103(1–2), 206–210. https://doi.org/10.1016/j.marpolbul.2015.12.018
Hartwig, A. (2000). Recent advances in metal carcinogenicity. Pure and Applied Chemistry, 72(6), 1007–1014. https://doi.org/10.1351/pac200072061007
Jinhui, S., Sudong, X., Yan, N., Xia, P., Jiahao, Q., & Yongjian, X. (2019). Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus Kuda Bleeker. Marine Pollution Bulletin, 149, 110510. https://doi.org/10.1016/j.marpolbul.2019.110510
Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA. Food web–specific biomagnification of persistent organic pollutants. Science. 2007;317(5835):236–9. 10.1126/science.1138275
Kim, H. S., Kim, Y. J., & Seo, Y. R. (2015). An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20(4), 232–240. https://doi.org/10.15430/jcp.2015.20.4.232
Kühn, S.; van Franeker, J. A. Quantitative Overview of Marine Debris Ingested by Marine Megafauna. Mar. Pollut. Bull. 2020, 151, 110858 DOI: 10.1016/j.marpolbul.2019.110858
Li, L., Wang, S., Shen, X., & Jiang, M. (2020). Ecological risk assessment of heavy metal pollution in the water of China’s coastal shellfish culture areas. Environmental Science and Pollution Research, 27(15), 18392–18402. https://doi.org/10.1007/s11356-020-08173-w
Loganathan, Y., & Kizhakedathil, M. P. J. (2022). A review on microplastics – an indelible ubiquitous pollutant. Biointerface Research in Applied Chemistry, 13(2), 126. https://doi.org/10.33263/briac132.126
Maher B, Taylor A, Batley G, Simpson S. Bioaccumulation. Sediment quality assessment: a practical guide: CSIRO Publishing; 2016. p. 123–56.
Martin, M. H. (1991). The heavy elements—chemistry, environmental impact and health effects. Environmental Pollution, 69(4), 354–356. https://doi.org/10.1016/0269-7491(91)90124-f
Michel, C., & Vincent-Hubert, F. (2015). DNA oxidation and DNA repair in gills of zebra mussels exposed to cadmium and benzo(a)pyrene. Ecotoxicology, 24(9), 2009–2016. https://doi.org/10.1007/s10646-015-1536-3
Miller, M. E., Hamann, M., & Kroon, F. J. (2020). Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLOS ONE, 15(10). https://doi.org/10.1371/journal.pone.0240792
Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for Heavy Metal Removal: A Review. SN Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05351-6
Ntengwe, F. W. (2006). Pollutant loads and water quality in streams of heavily populated and industrialised towns. Physics and Chemistry of the Earth, Parts A/B/C, 31(15–16), 832–839. https://doi.org/10.1016/j.pce.2006.08.025
Pettine, M., & Millero, F. J. (1990). Chromium speciation in seawater: The probable role of hydrogen peroxide. Limnology and Oceanography, 35(3), 730–736. https://doi.org/10.4319/lo.1990.35.3.0730
Provencher, J. F., Vermaire, J. C., Avery-Gomm, S., Braune, B. M., & Mallory, M. L. (2018). Garbage in guano? microplastic debris found in faecal precursors of seabirds known to ingest plastics. Science of The Total Environment, 644, 1477–1484. https://doi.org/10.1016/j.scitotenv.2018.07.101
Rainieri, S., Conlledo, N., Larsen, B. K., Granby, K., & Barranco, A. (2018). Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environmental research, 162, 135–143. https://doi.org/10.1016/j.envres.2017.12.019
Rafey, A., & Siddiqui, F. Z. (2021). A review of Plastic Waste Management in India – challenges and opportunities. International Journal of Environmental Analytical Chemistry, 103(16), 3971–3987. https://doi.org/10.1080/03067319.2021.1917560
Ryan, P. G., Connell, A. D., & Gardner, B. D. (1988). Plastic ingestion and PCBS in seabirds: Is there a relationship? Marine Pollution Bulletin, 19(4), 174–176. https://doi.org/10.1016/0025-326x(88)90674-1
Sahu, B. D., Koneru, M., Bijargi, S. R., Kota, A., & Sistla, R. (2014). Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chemico-biological interactions, 223, 69–79. https://doi.org/10.1016/j.cbi.2014.09.009
Schecter, A., Cramer, P., Boggess, K., Stanley, J., Päpke, O., Olson, J., Silver, A., & Schmitz, M. (2001). Intake of dioxins and related compounds from food in the U.S. population. Journal of Toxicology and Environmental Health, Part A, 63(1), 1–18. https://doi.org/10.1080/152873901750128326
Semeniuk, D. M., Maldonado, M. T., & Jaccard, S. L. (2016). Chromium uptake and adsorption in marine phytoplankton – implications for the marine chromium cycle. Geochimica et Cosmochimica Acta, 184, 41–54. https://doi.org/10.1016/j.gca.2016.04.021
Sharifuzzaman, S. M., Rahman, H., Ashekuzzaman, S. M., Islam, M. M., Chowdhury, S. R., & Hossain, M. S. (2016). Heavy metals accumulation in coastal sediments. Environmental Remediation Technologies for Metal-Contaminated Soils, 21–42. https://doi.org/10.1007/978-4-431-55759-3_2
Smital, T., & Kurelec, B. (1998). The chemosensitizers of multixenobiotic resistance mechanism in aquatic invertebrates: A new class of pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 399(1), 43–53. https://doi.org/10.1016/s0027-5107(97)00265-0
Shuto, R. (2005). Itai-itai. Encyclopedia of Toxicology, 655–656. https://doi.org/10.1016/b0-12-369400-0/01038-3
Takeuchi, I., Miyoshi, N., Mizukawa, K., Takada, H., Ikemoto, T., Omori, K., & Tsuchiya, K. (2009). Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by Δ13C and Δ15N isotope ratios as guides to trophic web structure. Marine Pollution Bulletin, 58(5), 663–671. https://doi.org/10.1016/j.marpolbul.2008.12.022
Tian, S., Pan, L., & Zhang, H. (2014). Identification of a CYP3A-like gene and cyps mrna expression modulation following exposure to benzo[a]pyrene in the bivalve mollusk chlamys farreri. Marine Environmental Research, 94, 7–15. https://doi.org/10.1016/j.marenvres.2013.11.001
Tsutsumi, T., Yanagi, T., Nakamura, M., Kono, Y., Uchibe, H., Iida, T., Hori, T., Nakagawa, R., Tobiishi, K., Matsuda, R., Sasaki, K., & Toyoda, M. (2001). Update of daily intake of pcdds, pcdfs, and dioxin-like PCBS from food in Japan. Chemosphere, 45(8), 1129–1137. https://doi.org/10.1016/s0045-6535(01)00151-5
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum (2012), 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
van Emmerik, T., Kieu-Le, T.-C., Loozen, M., van Oeveren, K., Strady, E., Bui, X.-T., Egger, M., Gasperi, J., Lebreton, L., Nguyen, P.-D., Schwarz, A., Slat, B., & Tassin, B. (2018b). A methodology to characterize riverine macroplastic emission into the Ocean. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00372
van Leeuwen, F. X. R., Feeley, M., Schrenk, D., Larsen, J. C., Farland, W., & Younes, M. (2000). Dioxins: Who’s Tolerable daily intake (TDI) revisited. Chemosphere, 40(9–11), 1095–1101. https://doi.org/10.1016/s0045-6535(99)00358-6
Wang JD, Tan Z, Peng JP, Qiu QX, Li MM. The behaviors of microplastics in the marine environment. Mar Environ Res. 2016;113:7–17. 10.1016/j.marenvres.2015.10.014
Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. https://doi.org/10.1016/j.microc.2009.09.014
Published
How to Cite
Issue
Section
Copyright (c) 2024 Jibaek Huh; Jake Albino

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


