Integrating Generative AI in Youth Mental Healthcare Solutions
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8202Keywords:
Artificial Intelligence, Generative AI, GenAI, Mental Health, Integration, Large Language Model, Technology, LLM, Open Source, Natural Language Processing, Impact, Challenges, Barriers, FutureAbstract
The advent of generative AI has opened up more avenues for mental health challenges among youth worldwide. This work represents a comprehensive survey of the recent progress of generative AI in youth mental healthcare concerning their impact, enabling technologies, challenges, and future directions. Some of the key technologies that form the bedrock for many applications involve NLP, transformer models, GAN, VAE, reinforcement learning, and Affective AI in the development of AI-powered chatbots, virtual therapists, personalized interventions, and early detection. We assess the role of open-source technologies such as orchestration frameworks, vector databases, large and small language models, front-end tools, and other enablers that empower RAG systems to elevate the capability for contextual relevance and effectiveness in Generation AI solutions. We present the positive impacts of generative AI: enhanced accessibility, increased engagement, and decreased cost, while also discussing critical concerns on ethical issues, data privacy, bias, and informed consent. We also probe barriers to mainstreaming, including technical limitations, policy gaps, and social resistance, and presented a critical review of pathways toward surmounting the difficulties. In the final portion of the study, we make conclusions and recommendations with regard to strategic future research and policy development recommendations that will ensure that generative AI is safe, ethical, and effective to deploy within youth mental healthcare for improved mental health outcomes among young populations globally.
Downloads
References or Bibliography
Benton, T. D., Boyd, R. C., & Njoroge, W. F. (2021). Addressing the global crisis of child and adolescent mental health. JAMA pediatrics, 175(11), 1108-1110.
GBD 2019 Mental Disorders Collaborators. (2022). Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9(2), 137-150.
Hawke, L. D., Monga, S., Korczak, D., Hayes, E., Relihan, J., Darnay, K., ... & Henderson, J. (2021). Impacts of the COVID‐19 pandemic on youth mental health among youth with physical health challenges. Early intervention in psychiatry, 15(5), 1146-1153.
Sai, S., Gaur, A., Sai, R., Chamola, V., Guizani, M., & Rodrigues, J. J. (2024). Generative ai for transformative healthcare: A comprehensive study of emerging models, applications, case studies and limitations. IEEE Access.
Banerjee, S., Dunn, P., Conard, S., & Ali, A. (2024). Mental Health Applications of Generative AI and Large Language Modeling in the United States. International Journal of Environmental Research and Public Health, 21(7), 910.
Vultr (2004). Unlocking the Power of AI in Healthcare & Life Sciences. https://www.vultr.com/marketing-sales-files/ai-healthcare-life-sciences.pdf
Xian, X., Chang, A., Xiang, Y. T., & Liu, M. T. (2024). Debate and Dilemmas Regarding Generative AI in Mental Health Care: Scoping Review. Interactive Journal of Medical Research, 13(1), e53672.
Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P. S., Mellor, J., ... & Gabriel, I. (2022, June). Taxonomy of risks posed by language models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 214-229).
Reddy, S. (2024). Generative AI in healthcare: an implementation science informed translational path on application, integration and governance. Implementation Science, 19(1), 27.
Kirova, V. D., Ku, C. S., Laracy, J. R., & Marlowe, T. J. (2023). The ethics of artificial intelligence in the era of generative AI. Journal of Systemics, Cybernetics and Informatics, 21(4), 42-50.
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv:2303.08774.
Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., & Oladunni, T. (2024). Advancements in Generative AI: A Comprehensive Review of GANs, GPT, Autoencoders, Diffusion Model, and Transformers. IEEE Access.
Nova, K. (2023). Generative AI in healthcare: advancements in electronic health records, facilitating medical languages, and personalized patient care. Journal of Advanced Analytics in Healthcare Management, 7(1), 115-131.
Zifkin, C., Montreuil, M., Beauséjour, M. È., Picard, S., Gendron-Cloutier, L., & Carnevale, F. A. (2021). An exploration of youth and parents' experiences of child mental health service access. Archives of Psychiatric Nursing, 35(5), 549-555.
Sezgin, E., & McKay, I. (2024). Behavioral health and generative AI: a perspective on future of therapies and patient care. npj Mental Health Research, 3(1), 25.
Omarov, B., Zhumanov, Z., Gumar, A., & Kuntunova, L. (2023). Artificial intelligence enabled mobile chatbot psychologist using AIML and cognitive behavioral therapy. International Journal of Advanced Computer Science and Applications, 14(6).
Pentina, I., Hancock, T., & Xie, T. (2023). Exploring relationship development with social chatbots: A mixed-method study of replika. Computers in Human Behavior, 140, 107600.
Riise, E. N., Haugland, B. S. M., & Wergeland, G. J. H. (2023). Cognitive Behavioral Therapy (CBT) with Children and Adolescents. In Handbook of Clinical Child Psychology: Integrating Theory and Research into Practice (pp. 407-424). Cham: Springer International Publishing.
Yim, D., Khuntia, J., Parameswaran, V., & Meyers, A. (2024). Preliminary Evidence of the Use of Generative AI in Health Care Clinical Services: Systematic Narrative Review. JMIR Medical Informatics, 12(1), e52073.
Kim, J., Kadkol, S., Solomon, I., Yeh, H., Soh, J. Y., Nguyen, T. M., ... & Ajilore, O. A. (2023). AI anxiety: a comprehensive analysis of psychological factors and interventions. Available at SSRN 4573394.
Li, H., Zhang, R., Lee, Y. C., Kraut, R. E., & Mohr, D. C. (2023). Systematic review and meta-analysis of AI-based conversational agents for promoting mental health and well-being. NPJ Digital Medicine, 6(1), 236.
Vaswani, A. (2017). Attention is all you need. arXiv:1706.03762.
Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Doersch, C. (2016). Tutorial on variational autoencoders. arXiv:1606.05908.
Shakya, A. K., Pillai, G., & Chakrabarty, S. (2023). Reinforcement learning algorithms: A brief survey. Expert Systems with Applications, 231, 120495.
Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of medicine, surgery, and public health, 100099.
Picard, R. W. (2000). Affective computing. MIT press.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv:2312.10997.
Singh, A., Ehtesham, A., Mahmud, S., & Kim, J. H. (2024, January). Revolutionizing mental health care through langchain: A journey with a large language model. In 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0073-0078). IEEE.
Jin, M., Yu, Q., Shu, D., Zhang, C., Fan, L., Hua, W., ... & Meng, Y. (2024). Health-llm: Personalized retrieval-augmented disease prediction system. arXiv:2402.00746.
Taipalus, T. (2024). Vector database management systems: Fundamental concepts, use-cases, and current challenges. Cognitive Systems Research, 85, 101216.
Ghadekar, P., Mohite, S., More, O., Patil, P., & Mangrule, S. (2023, August). Sentence Meaning Similarity Detector Using FAISS. In 2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-6). IEEE.
Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., ... & Ganapathy, R. (2024). The llama 3 herd of models. arXiv:2407.21783.
Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. D. L., ... & Sayed, W. E. (2023). Mistral 7B. arXiv:2310.06825.
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah, A., Awadalla, H., ... & Zhou, X. (2024). Phi-3 technical report: A highly capable language model locally on your phone. arXiv:2404.14219.
A. Kapoor and S. D. Shetty (2004). Enhancing Healthcare Information Accessibility Through a Generative Medical Chatbot. 2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS), Bengaluru, India, 2024, pp. 1-4, doi: 10.1109/ICETCS61022.2024.10543529.
Khorasani, M., Abdou, M., & Hernández Fernández, J. (2022). Web Application Development with Streamlit. Software Development, 498-507.
Kamath, U., Keenan, K., Somers, G., & Sorenson, S. (2024). LLMs in Production. In Large Language Models: A Deep Dive: Bridging Theory and Practice (pp. 315-373). Cham: Springer Nature Switzerland.
Xie, X., Liu, H., Hou, W., & Huang, H. (2023). A Brief Survey of Vector Databases. In 2023 9th International Conference on Big Data and Information Analytics (BigDIA) (pp. 364-371). IEEE.
Mulukuntla, S. (2022). Generative AI-Benefits, Limitations, Potential risks and Challenges in Healthcare Industry. EPH-International Journal of Medical and Health Science, 8(4), 1-9.
Koutsouleris, N., Hauser, T. U., Skvortsova, V., & De Choudhury, M. (2022). From promise to practice: towards the realisation of AI-informed mental health care. The Lancet Digital Health, 4(11), e829-e840.
Minerva, F., & Giubilini, A. (2023). Is AI the future of mental healthcare? Topoi, 42(3), 809-817.
Pataranutaporn, P., Danry, V., Leong, J., Punpongsanon, P., Novy, D., Maes, P., & Sra, M. (2021). AI-generated characters for supporting personalized learning and well-being. Nature Machine Intelligence, 3(12), 1013-1022.
Medina, J. C., & Andrade, R. R. (2024, July). Advancements in Artificial Intelligence for Health: A Rapid Review of AI-Based Mental Health Technologies Used in the Age of Large Language Models. In International Work-Conference on Bioinformatics and Biomedical Engineering (pp. 318-343). Cham: Springer Nature Switzerland.
Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in medical practice: in-depth exploration of privacy and security challenges. Journal of Medical Internet Research, 26, e53008.
Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., & Gal, Y. (2024). AI models collapse when trained on recursively generated data. Nature, 631(8022), 755-759.
Grodniewicz, J. P., & Hohol, M. (2023). Waiting for a digital therapist: three challenges on the path to psychotherapy delivered by artificial intelligence. Frontiers in Psychiatry, 14, 1190084.
Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC medical informatics and decision making, 20, 1-19.
Qi, Y. (2024). Pilot Quasi-Experimental Research on the Effectiveness of the Woebot AI Chatbot for Reducing Mild Depression Symptoms among Athletes. International Journal of Human–Computer Interaction, 1-8.
Dinesh, D. N., Rao, M. N., & Sinha, C. (2024). Language adaptations of mental health interventions: User interaction comparisons with an AI-enabled conversational agent (Wysa) in English and Spanish. Digital Health, 10, 20552076241255616.
Karkosz, S., Szymański, R., Sanna, K., & Michałowski, J. (2024). Effectiveness of a Web-based and Mobile Therapy Chatbot on Anxiety and Depressive Symptoms in Subclinical Young Adults: Randomized Controlled Trial. JMIR formative research, 8(1), e47960.
Daneshvar, H., Boursalie, O., Samavi, R., Doyle, T. E., Duncan, L., Pires, P., & Sassi, R. (2024). SOK: Application of machine learning models in child and youth mental health decision-making. Artificial Intelligence for Medicine, 113-132.
Montejo-Ráez, A., Molina-González, M. D., Jiménez-Zafra, S. M., García-Cumbreras, M. Á., & García-López, L. J. (2024). A survey on detecting mental disorders with natural language processing: Literature review, trends and challenges. Computer Science Review, 53, 100654.
Zhang, Z. (2024). Early warning model of adolescent mental health based on big data and machine learning. Soft Computing, 28(1), 811-828.
Prama, T. T., Islam, M. S., Anwar, M. M., & Jahan, I. (2024). AI-Enabled Deep Depression Detection and Evaluation Informed by DSM-5-TR. IEEE Transactions on Computational Social Systems.
Mazzolenis, M. V., Mourra, G. N., Moreau, S., Mazzolenis, M. E., Cerda, I. H., Vega, J., ... & Thérond, A. (2024). The Role of Virtual Reality and Artificial Intelligence in Cognitive Pain Therapy: A Narrative Review. Current Pain and Headache Reports, 1-12.
Khalid, U. B., Naeem, M., Stasolla, F., Syed, M. H., Abbas, M., & Coronato, A. (2024). Impact of AI-powered solutions in rehabilitation process: Recent improvements and future trends. International Journal of General Medicine, 943-969.
Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
Elyoseph, Z., & Levkovich, I. (2024). Comparing the perspectives of generative AI, mental health experts, and the general public on schizophrenia recovery: case vignette study. JMIR Mental Health, 11, e53043.
Rane, N. (2023). ChatGPT and Similar Generative Artificial Intelligence (AI) for Smart Industry: role, challenges and opportunities for industry 4.0, industry 5.0 and society 5.0. Challenges and Opportunities for Industry, 4.
Hua, Y., Na, H., Li, Z., Liu, F., Fang, X., Clifton, D., & Torous, J. (2024). Applying and Evaluating Large Language Models in Mental Health Care: A Scoping Review of Human-Assessed Generative Tasks. arXiv:2408.11288.
Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3.
Caddle, X. V., Naher, N., Miller, Z. P., Badillo-Urquiola, K., & Wisniewski, P. J. (2023). Duty to respond: the challenges social service providers face when charged with keeping youth safe online. Proceedings of the ACM on Human-Computer Interaction, 7(GROUP), 1-35.
Kaduskar, V. P., Mhetre, H. V., Khatavkar, S. M., Chougule, P. A., Patil, M. V., Moje, R. J., & Naik, N. (2024). Navigating the Frontier of Generative AI Integration in Healthcare: Adoption, Governance, and Legal Compliance. In AI Healthcare Applications and Security, Ethical, and Legal Considerations (pp. 261-289). IGI Global.
Palaniappan, K., Lin, E. Y. T., & Vogel, S. (2024). Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. In Healthcare (Vol. 12, No. 5, p. 562). MDPI.
Henderson, P., Hashimoto, T., & Lemley, M. (2023). Where's the Liability in harmful AI Speech? J. Free Speech L., 3, 589.
Zhang, M., Scandiffio, J., Younus, S., Jeyakumar, T., Karsan, I., Charow, R., ... & Wiljer, D. (2023). The Adoption of AI in Mental Health Care–Perspectives from Mental Health Professionals: Qualitative Descriptive Study. JMIR Formative Research, 7(1), e47847.
Thakkar, A., Gupta, A., & De Sousa, A. (2024). Artificial intelligence in positive mental health: a narrative review. Frontiers in Digital Health, 6, 1280235.
Molli, V. L. P. (2024). Enhancing Healthcare Equity through AI-Powered Decision Support Systems: Addressing Disparities in Access and Treatment Outcomes. International Journal of Sustainable Development Through AI, ML and IoT, 3(1), 1-12.
Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., ... & Amira, A. (2023). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929-5021.
Joyce, D. W., Kormilitzin, A., Smith, K. A., & Cipriani, A. (2023). Explainable artificial intelligence for mental health through transparency and interpretability for understandability. npj Digital Medicine, 6(1), 6.
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.
Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., ... & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156-191.
Weisz, J. D., He, J., Muller, M., Hoefer, G., Miles, R., & Geyer, W. (2024, May). Design Principles for Generative AI Applications. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1-22).
Andrew, J., Rudra, M., Eunice, J., & Belfin, R. V. (2023). Artificial intelligence in adolescents mental health disorder diagnosis, prognosis, and treatment. Frontiers in Public Health, 11, 1110088.
Diaz-Asper, C., Hauglid, M. K., Chandler, C., Cohen, A. S., Foltz, P. W., & Elvevåg, B. (2024). A framework for language technologies in behavioral research and clinical applications: Ethical challenges, implications, and solutions. American Psychologist, 79(1), 79.
Vincenzi, B., Stumpf, S., Taylor, A. S., & Nakao, Y. (2024). Lay User Involvement in Developing Human-Centric Responsible AI Systems: When and How? ACM Journal on Responsible Computing.
Schmidt, J., Schutte, N. M., Buttigieg, S., Novillo-Ortiz, D., Sutherland, E., Anderson, M., ... & Van Kessel, R. (2024). Mapping the regulatory landscape for artificial intelligence in health within the European Union. npj Digital Medicine, 7(1), 229.
De Freitas, J., & Cohen, I. G. (2024). The health risks of generative AI-based wellness apps. Nature Medicine, 1-7.
Chaker, S. C., Hung, Y. C., Saad, M., Golinko, M. S., & Galdyn, I. A. (2024). Easing the Burden on Caregivers-Applications of Artificial Intelligence for Physicians and Caregivers of Children with Cleft Lip and Palate. The Cleft Palate Craniofacial Journal, 10556656231223596.
Camilleri, M. A. (2024). Artificial intelligence governance: Ethical considerations and implications for social responsibility. Expert systems, 41(7), e13406.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Richard Shan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


