The Significance of Long Non-Coding RNAs in Regulating the Inflammatory Response
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8191Keywords:
lncRNA, lincRNA, Inflammation, GAPLINC, lincRNA-Cox2, NF-κB Pathway, Macrophages, eRNAAbstract
As part of the innate immune system, inflammation is a complex process that increases vascular permeability to eliminate pathogens and assist in the body’s healing process. Recently, the field of immunogenetics has identified long non-coding RNAs (lncRNAs) Gastric Adenocarcinoma Associated Positive CD44 Regulator Long Intergenic Non-Coding RNA (GAPLINC) and long intergenic non-coding RNA-Cyclooxygenase 2 (lincRNA-Cox2), with roles to regulate inflammation through the NK-kB pathway, transcription of immune genes, and macrophage activity. More specifically, GAPLINC regulates the translational ability of NF-κB subunit p65 and the functions of macrophages such as phagocytosis, antigen uptake, differentiation, and migration. On the other hand, lincRNA-Cox2 regulates the expression of proximal gene PTGS2 through an eRNA mechanism and acts as a scaffold for synthesizing the SWI/SNF complex.
Downloads
References or Bibliography
Alberts, B. (2002). The Adaptive Immune System. Nih.gov; Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK21070/
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Chromosomal DNA and Its Packaging in the Chromatin Fiber. Nih.gov; Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26834/
Arango Duque, G., & Descoteaux, A. (2014). Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Frontiers in Immunology, 5(491). https://doi.org/10.3389/fimmu.2014.00491
Brostrom, M. A., & Brostrom, C. O. (2007). Protein Synthesis. Encyclopedia of Stress, 258–265. https://doi.org/10.1016/B978-012373947-6.00315-9
Cheng, G., He, L., & Zhang, Y. (2020). LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3 signaling pathway. Molecular and Cellular Biochemistry, 475(1-2), 239–247. https://doi.org/10.1007/s11010-020-03877-6
Cleveland Clinic. (2021). Monocytes: A Type of White Blood Cell — What Are Normal Ranges? Cleveland Clinic. https://my.clevelandclinic.org/health/body/22110-monocytes
Cleveland Clinic. (2022, November 4). Prostaglandins. Cleveland Clinic. https://my.clevelandclinic.org/health/articles/24411-prostaglandins
Cooper, G. M. (2013). Protein Degradation. Nih.gov; Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9957/
David Zelman. (2020). What Is Inflammation? WebMD; WebMD. https://www.webmd.com/arthritis/about-inflammation
Elcheva, I. A., & Spiegelman, V. S. (2020). The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers, 12(12), 3854. https://doi.org/10.3390/cancers12123854
Elektra Kantzari Robinson, Worthington, A., Poscablo, D., Shapleigh, B., Mays Mohammed Salih, Halasz, H., Seninge, L., Mosqueira, B., Valeriya Smaliy, & E Camilla Forsberg. (2022). lincRNA-Cox2 Functions to Regulate Inflammation in Alveolar Macrophages during Acute Lung Injury. the Journal of Immunology (1950), 208(8), 1886–1900. https://doi.org/10.4049/jimmunol.2100743
Elling, R., Elektra Kantzari Robinson, Shapleigh, B., Liapis, S. C., Covarrubias, S., Katzman, S., Groff, A. F., Jiang, Z., Agarwal, S., Motwani, M., Chan, J., Sharma, S., Hennessy, E. J., FitzGerald, G. A., McManus, M. T., Rinn, J. L., & Fitzgerald, K. A. (2018). Genetic Models Reveal cis and trans Immune-Regulatory Activities for lincRNA-Cox2. Cell Reports, 25(6), 1511-1524.e6. https://doi.org/10.1016/j.celrep.2018.10.027
Florio, T. J., Lokareddy, R. K., Yeggoni, D. P., Sankhala, R. S., Ott, C. A., Gillilan, R. E., & Cingolani, G. (2022). Differential recognition of canonical NF-κB dimers by Importin α3. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28846-z
Ghlichloo, I., & Gerriets, V. (2023, May 1). Nonsteroidal Anti-inflammatory Drugs (NSAIDs). PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK547742/
Gu, H., Chen, J., Song, Y., & Shao, H. (2018). Gastric Adenocarcinoma Predictive Long Intergenic Non-Coding RNA Promotes Tumor Occurrence and Progression in Non-Small Cell Lung Cancer via Regulation of the miR-661/eEF2K Signaling Pathway. Cellular Physiology and Biochemistry, 51(5), 2136–2147. https://doi.org/10.1159/000495831
Guennewig, B., & Cooper, A. A. (2014). The Central Role of Noncoding RNA in the Brain. International Review of Neurobiology, 153–194. https://doi.org/10.1016/b978-0-12-801105-8.00007-2
Guilliams, M., & Svedberg, F. R. (2021). Does tissue imprinting restrict macrophage plasticity? Nature Immunology, 22(2), 118–127. https://doi.org/10.1038/s41590-020-00849-2
Hoppstädter, J., Dembek, A., Linnenberger, R., Dahlem, C., Barghash, A., Fecher-Trost, C., Fuhrmann, G., Koch, M., Kraegeloh, A., Huwer, H., & Kiemer, A. K. (2019). Toll-Like Receptor 2 Release by Macrophages: An Anti-inflammatory Program Induced by Glucocorticoids and Lipopolysaccharide. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01634
Hu, G., Ai Yu Gong, Wang, Y., Ma, S., Chen, X., Chen, J., Su, C., Shibata, A., Strauss-Soukup, J. K., & Drescher, K. M. (2016). LincRNA-Cox2 Promotes Late Inflammatory Gene Transcription in Macrophages through Modulating SWI/SNF-Mediated Chromatin Remodeling. Journal of Immunology, 196(6), 2799–2808. https://doi.org/10.4049/jimmunol.1502146
Hu, Y., Wang, J., Qian, J., Kong, X., Tang, J., Wang, Y., Chen, H., Hong, J., Zou, W., Chen, Y., Xu, J., & Fang, J.-Y. (2014). Long Noncoding RNA GAPLINC Regulates CD44-Dependent Cell Invasiveness and Associates with Poor Prognosis of Gastric Cancer. Cancer Research, 74(23), 6890–6902. https://doi.org/10.1158/0008-5472.CAN-14-0686
Institute for Quality and Efficiency in Health Care. (2023, August 14). The innate and adaptive immune systems. National Library of Medicine; Institute for Quality and Efficiency in Health Care (IQWiG). https://www.ncbi.nlm.nih.gov/books/NBK279396/
Kim, T.-K., Hemberg, M., & Gray, J. M. (2015). Enhancer RNAs: A Class of Long Noncoding RNAs Synthesized at Enhancers: Figure 1. Cold Spring Harbor Perspectives in Biology, 7(1), a018622. https://doi.org/10.1101/cshperspect.a018622
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics, 3(9), 662–673. https://doi.org/10.1038/nrg887
Li, J., Ming, Z., Yang, L., Wang, T., Liu, G., & Ma, Q. (2022). Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes & Diseases. https://doi.org/10.1016/j.gendis.2022.04.007
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(17023). https://doi.org/10.1038/sigtrans.2017.23
Luo, Y., Ouyang, J., Zhou, D., Zhong, S., Wen, M., Ou, W., Yu, H., Jia, L., & Huang, Y. (2018). Long Noncoding RNA GAPLINC Promotes Cells Migration and Invasion in Colorectal Cancer Cell by Regulating miR-34a/c-MET Signal Pathway. Digestive Diseases and Sciences, 63(4), 890–899. https://doi.org/10.1007/s10620-018-4915-9
Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger, M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J. B., Lee, J. T., & Mendell, J. T. (2023). Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 24. https://doi.org/10.1038/s41580-022-00566-8
Mays Mohammed Salih, Elektra Kantzari Robinson, Malekos, E., Perez, E., Capili, A., Kim, K., Zhang, W. Z., Cloonan, S. M., & Carpenter, S. (2023). LincRNA-Cox2 Regulates Smoke-induced Inflammation in Murine Macrophages. American Journal of Respiratory Cell and Molecular Biology, 68(5), 511–522. https://doi.org/10.1165/rcmb.2022-0413oc
MedlinePlus. (2018). Immune response: MedlinePlus Medical Encyclopedia. Medlineplus.gov; National Library of Medicine. https://medlineplus.gov/ency/article/000821.htm
MedlinePlus. (2021, June 11). What is Epigenetics? Medlineplus.gov. https://medlineplus.gov/genetics/understanding/howgeneswork/epigenome/
National Cancer Institute. (2011, February 2). https://www.cancer.gov/publications/dictionaries/cancer-terms/def/adaptive-immunity. Www.cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/adaptive-immunity
Ostrander, E. (2022, September 6). Central Dogma. National Human Genome Research Institute. https://www.genome.gov/genetics-glossary/Central-Dogma
PharmGKB. (2024). PharmGKB. PharmGKB; PharmGKB. https://www.pharmgkb.org/vip/PA166169431
Ransohoff, J. D., Wei, Y., & Khavari, P. A. (2017). The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 19(3), 143–157. https://doi.org/10.1038/nrm.2017.104
Sartorelli, V., & Lauberth, S. M. (2020). Enhancer RNAs are an important regulatory layer of the epigenome. Nature Structural & Molecular Biology, 27(6), 521–528. https://doi.org/10.1038/s41594-020-0446-0
Sun, S.-C. (2017). The non-canonical NF-κB pathway in immunity and inflammation. Nature Reviews Immunology, 17(9), 545–558. https://doi.org/10.1038/nri.2017.52
Tabassum, H., & Parvez, S. (2021). Translational epigenetics in neurodegenerative diseases. Epigenetics and Metabolomics, 297–313. https://doi.org/10.1016/b978-0-323-85652-2.00020-8
Tak, P. P., & Firestein, G. S. (2001). NF-κB: a key role in inflammatory diseases. Journal of Clinical Investigation, 107(1), 7–11. https://doi.org/10.1172/jci11830
Tang, Y., Yan, J.-H., Ge, Z.-W., Fei, A.-H., & Zhang, Y.-C. (2022). LncRNA Gaplinc promotes the pyroptosis of vascular endothelial cells through SP1 binding to enhance NLRP3 transcription in atherosclerosis. Cellular Signalling, 99, 110420–110420. https://doi.org/10.1016/j.cellsig.2022.110420
Thermo Fisher Scientific. (2019). RNA Interference Overview | Thermo Fisher Scientific - UK. Thermofisher.com. https://www.thermofisher.com/us/en/home/life-science/rnai/rna-interference-overview.html
Valverde, A., Raza Ali Naqvi, & Naqvi, A. R. (2024). Macrophage-enriched novel functional long noncoding RNAs LRRC75A-AS1 and GAPLINC regulate polarization and innate immune responses. Inflammation Research, 73(5), 771–792. https://doi.org/10.1007/s00011-024-01865-w
Vollmers, A. C., Covarrubias, S., Kuang, D., Shulkin, A., Iwuagwu, J., Katzman, S., Song, R., Viswanathan, K., Vollmers, C., Wakeland, E., & Carpenter, S. (2021). A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proceedings of the National Academy of Sciences of the United States of America, 118(7), e2016648118. https://doi.org/10.1073/pnas.2016648118
Walther, K., & Schulte, L. N. (2021). The role of lncRNAs in innate immunity and inflammation. RNA Biology, 18(5), 587–603. https://doi.org/10.1080/15476286.2020.1845505
Wang, S., Yang, X., Xie, W., Fu, S., Chen, Q., Li, Z., Zhang, Z., Sun, T., Gong, B., & Ma, M. (2021). LncRNA GAPLINC Promotes Renal Cell Cancer Tumorigenesis by Targeting the miR-135b-5p/CSF1 Axis. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.718532
Węgiel, B., Hauser, C. J., & Otterbein, L. E. (2015). Heme as a danger molecule in pathogen recognition. Free Radical Biology and Medicine, 89, 651–661. https://doi.org/10.1016/j.freeradbiomed.2015.08.020
Woolard, E., & Chorley, B. N. (2019). The Role of Noncoding RNAs in Gene Regulation. Toxicoepigenetics, 217–235. https://doi.org/10.1016/b978-0-12-812433-8.00009-5
Xu, Y., Yu, J., Ma, C., Gong, Z., Wu, X., & Deng, G. (2021). Impact of knockdown LincRNA-Cox2 on apoptosis of macrophage infected with Bacillus Calmette-Guérin. Molecular Immunology, 130, 85–95. https://doi.org/10.1016/j.molimm.2020.11.008
Yao, Y., Xu, X.-H., & Jin, L. (2019). Macrophage Polarization in Physiological and Pathological Pregnancy. Frontiers in Immunology, 10(792). https://doi.org/10.3389/fimmu.2019.00792
Yoon, J.-H., Abdelmohsen, K., Kim, J., Yang, X., Martindale, J. L., Tominaga-Yamanaka, K., White, E. J., Orjalo, A. V., Rinn, J. L., Kreft, S. G., Wilson, G. M., & Gorospe, M. (2013). Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature Communications, 4(1). https://doi.org/10.1038/ncomms3939
Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 1–23. https://doi.org/10.1038/s41392-020-00312-6
Yunna, C., Mengru, H., Lei, W., & Weidong, C. (2020). Macrophage M1/M2 polarization. European Journal of Pharmacology, 877, 173090. https://doi.org/10.1016/j.ejphar.2020.173090
Zhang, P., Wu, W., Chen, Q., & Chen, M. (2019). Non-Coding RNAs and their Integrated Networks. Journal of Integrative Bioinformatics, 16(3). https://doi.org/10.1515/jib-2019-0027
Published
How to Cite
Issue
Section
Copyright (c) 2024 Jalyn Huang; Madison Pines

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


