Exploring the Optimized Function of Polymer Coated Nanoparticles: Applications in Drug Delivery Systems
DOI:
https://doi.org/10.47611/jsrhs.v13i4.8111Keywords:
Polymer, Coating, Synthetic, Natural, Nanoparticles, Inorganic, Function, Drug Delivery, ToxicityAbstract
Nanoparticles (NPs) have gained traction throughout the recent years for their usage in many applications, including as drug delivery carriers. With their advantages - high surface area to volume ratio, surface functionalization, permeability, come with a downside of toxicity. Most of the inorganic NPs can cause ion leakage through core dissolution, leading to reactive oxygen species (ROS) production and ultimately to an extended damage to the liver and kidneys. Those side effects can be avoided by a polymer coating on the surface of the NPs. This paper aims to answer a rarely discussed question - what NPs - polymers system offers most benefits and least side effects. Throughout all the compiled findings, two strong candidates for NPs and two strong candidates for polymers stand out. Superparamagnetic iron oxide nanoparticles (SPIONs) and mesoporous silica nanoparticles (MSNs) are two of the most exceptional NPs for their unique magnetic properties and mesoporous structures, respectively, and paired with the enhanced properties of the natural polymer chitosan (Ch) and the synthetic poly(ethylene glycol) (PEG), can theoretically become the most suitable candidates for drug delivery.
Downloads
References or Bibliography
References
Candan, F., Markushin, Y., Ozbay, G. (2024). Nanoparticle Uptake and Bioaccumulation in Pisum sativum L. (Green Pea) Analyzed via Dark-Field Microscopy, Infrared Spectroscopy, and Principal Component Analysis Combined with Machine Learning. Agronomy 2024, 14, 1473. https://doi.org/10.3390/agronomy14071473
Chandran, P., Riviere, J. E., & Monteiro-Riviere, N. A. (2017). Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology, 11(4), 507–519. https://doi.org/10.1080/17435390.2017.1314036
Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles - friends or enemies?. International journal of environmental health research, 32(4), 885–901. https://doi.org/10.1080/09603123.2020.1805415
d'Amora, M., Raffa, V., De Angelis, F., & Tantussi, F. (2021). Toxicological Profile of Plasmonic Nanoparticles in Zebrafish Model. International journal of molecular sciences, 22(12), 6372. https://doi.org/10.3390/ijms22126372
Daraee, H., Eatemadi, A., Abbasi, E., Fekri Aval, S., Kouhi, M., & Akbarzadeh, A. (2014). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 410–422. https://doi.org/10.3109/21691401.2014.955107
D'souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. ExperYasmt opinion on drug delivery, 13(9), 1257–1275. https://doi.org/10.1080/17425247.2016.1182485
Endes, C., Camarero-Espinosa, S., Mueller, S., Foster, E. J., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., & Clift, M. J. (2016). A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of nanobiotechnology, 14(1), 78. https://doi.org/10.1186/s12951-016-0230-9
Fernández-Serra, R., Lekouaghet, A., Peracho, L., Yonesi, M., Alcázar, A., Chioua, M., Marco-Contelles, J., Pérez-Rigueiro, J., Rojo, F. J., Panetsos, F., Guinea, G. V., & González-Nieto, D. (2024). Permselectivity of Silk Fibroin Hydrogels for Advanced Drug Delivery Neurotherapies. Biomacromolecules, 25(8), 5233–5250. https://doi.org/10.1021/acs.biomac.4c00629
Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
Hao, L., Zhou, Q., Piao, Y., Zhou, Z., Tang, J., & Shen, Y. (2021). Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 330, 362–371. https://doi.org/10.1016/j.jconrel.2020.12.035
Kaltbeitzel, J., & Wich, P. R. (2023). Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie (International ed. in English), 62(44), e202216097. https://doi.org/10.1002/anie.202216097
Knop, K., Hoogenboom, R., Fischer, D. and Schubert, U. (2010), Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition, 49(36), 6288-6308. https://doi.org/10.1002/anie.200902672
Li, H., Zhu, J., Xu, Y. W., Mou, F. F., Shan, X. L., Wang, Q. L., Liu, B. N., Ning, K., Liu, J. J., Wang, Y. C., Mi, J. X., Wei, X., Shao, S. J., Cui, G. H., Lu, R., & Guo, H. D. (2022). Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox biology, 54, 102384. https://doi.org/10.1016/j.redox.2022.102384
Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine : nanotechnology, biology, and medicine, 14(1), 1–12. https://doi.org/10.1016/j.nano.2017.08.011
MacCuaig, W. M., Samykutty, A., Foote, J., Luo, W., Filatenkov, A., Li, M., Houchen, C., Grizzle, W. E., & McNally, L. R. (2022). Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics, 14(5), 969. https://doi.org/10.3390/pharmaceutics14050969
Malhotra, N., Lee, J. S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T. R., & Hsiao, C. D. (2020). Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules (Basel, Switzerland), 25(14), 3159. https://doi.org/10.3390/molecules25143159
Mehdi-Sefiani, H., Granados-Carrera, C. M., Romero, A., Chicardi, E., Domínguez-Robles, J., & Perez-Puyana, V. M. (2024). Chitosan-Type-A-Gelatin Hydrogels Used as Potential Platforms in Tissue Engineering for Drug Delivery. Gels (Basel, Switzerland), 10(7), 419. https://doi.org/10.3390/gels10070419
Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., & Jurowski, K. (2024). Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. International journal of molecular sciences, 25(7), 4057. https://doi.org/10.3390/ijms25074057
Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of controlled release : official journal of the Controlled Release Society, 149(1), 65–71. https://doi.org/10.1016/j.jconrel.2009.12.006
Pooresmaeil, M., & Namazi, H. (2021). Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydrate polymers, 258, 117654. https://doi.org/10.1016/j.carbpol.2021.117654
Quan, L., Xin, Y., Wu, X., & Ao, Q. (2022). Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers, 14(11), 2184. https://doi.org/10.3390/polym14112184
Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery, 7(9), 1063–1077. https://doi.org/10.1517/17425247.2010.502560
Rehman, A., Jafari, S. M., Tong, Q., Riaz, T., Assadpour, E., Aadil, R. M., Niazi, S., Khan, I. M., Shehzad, Q., Ali, A., & Khan, S. (2020). Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in colloid and interface science, 284, 102251. https://doi.org/10.1016/j.cis.2020.102251
Rosenholm, J. M., Sahlgren, C., Linden, M. (2010) Towards multifunctional, targeted drug delivery using mesoporous silica nanoparticles - opportunities and challenges. Nanoscale 2, 1870 - 1883. https://doi.org/10.1039/C0NR00156B
Siddique, S.; Chow, J.C.L. (2020). Gold Nanoparticles for Drug Delivery and Cancer Therapy. Applied Sciences, 10(11), 3824. https://doi.org/10.3390/app10113824
Singh, N., Jenkins, G. J., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews, 1, 10.3402/nano.v1i0.5358. https://doi.org/10.3402/nano.v1i0.5358
Shevtsov, M., Nikolaev, B., Marchenko, Y., Yakovleva, L., Skvortsov, N., Mazur, A., Tolstoy, P., Ryzhov, V., & Multhoff, G. (2018). Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). International journal of nanomedicine, 13, 1471–1482. https://doi.org/10.2147/IJN.S152461
Talarska, P., Boruczkowski, M., & Żurawski, J. (2021). Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials (Basel, Switzerland), 11(9), 2454. https://doi.org/10.3390/nano11092454
Tang, F., Li, L., & Chen, D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials (Deerfield Beach, Fla.), 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763
Thambi, T., You, D. G., Han, H. S., Deepagan, V. G., Jeon, S. M., Suh, Y. D., Choi, K. Y., Kim, K., Kwon, I. C., Yi, G. R., Lee, J. Y., Lee, D. S., & Park, J. H. (2014). Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Advanced healthcare materials, 3(11), 1829–1838. https://doi.org/10.1002/adhm.201300691
Truong, L., Zaikova, T., Baldock, B. L., Balik-Meisner, M., To, K., Reif, D. M., … Tanguay, R. L. (2019). Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish. Nanotoxicology, 13(7), 879–893. https://doi.org/10.1080/17435390.2019.1592259
Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. International journal of nanomedicine, 6, 765–774. https://doi.org/10.2147/IJN.S17296
Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. S., & Chen, G. (2015). Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today, 20(5), 595–601. https://doi.org/10.1016/j.drudis.2014.11.014
Wu, X., Xin, Y., Zhang, H., Quan, L., & Ao, Q. (2024). Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. International journal of nanomedicine, 19, 7415–7471. https://doi.org/10.2147/IJN.S460047
Yasmin, R., Shah, M., Khan., S. A., Ali, (2016) R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 6(2), 191-207, https://doi.org/10.1515/ntrev-2016-0009
Yeh, Y. C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880. https://doi.org/10.1039/c1nr11188d
Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., Huang, Y., Pan, X., & Wu, C. (2018). Mesoporous silica nanoparticles for drug and gene delivery. Acta pharmaceutica Sinica. B, 8(2), 165–177. https://doi.org/10.1016/j.apsb.2018.01.007
Published
How to Cite
Issue
Section
Copyright (c) 2024 Aazan Ulhaq; Kristina Lilova, Virgel Torremocha

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


