Exploring the Optimized Function of Polymer Coated Nanoparticles: Applications in Drug Delivery Systems

Authors

  • Aazan Ulhaq Queens High School for the Sciences
  • Kristina Lilova
  • Virgel Torremocha

DOI:

https://doi.org/10.47611/jsrhs.v13i4.8111

Keywords:

Polymer, Coating, Synthetic, Natural, Nanoparticles, Inorganic, Function, Drug Delivery, Toxicity

Abstract

Nanoparticles (NPs) have gained traction throughout the recent years for their usage in many applications, including as drug delivery carriers. With their advantages -  high surface area to volume ratio, surface functionalization, permeability, come with a downside of toxicity. Most of the inorganic NPs can cause ion leakage through core dissolution, leading to reactive oxygen species (ROS) production and ultimately to an extended damage to the liver and kidneys. Those side effects can be avoided by a polymer coating on the surface of the NPs. This paper aims to answer a rarely discussed question -  what NPs - polymers system offers most benefits and least side effects.  Throughout all the compiled findings, two strong candidates for NPs and two strong candidates for polymers stand out. Superparamagnetic iron oxide nanoparticles (SPIONs) and mesoporous silica nanoparticles (MSNs) are two of the most exceptional NPs for their unique magnetic properties and mesoporous structures, respectively, and paired with the enhanced properties of the natural polymer chitosan (Ch) and the synthetic poly(ethylene glycol) (PEG), can theoretically become the most suitable candidates for drug delivery.  

Downloads

Download data is not yet available.

References or Bibliography

References

Candan, F., Markushin, Y., Ozbay, G. (2024). Nanoparticle Uptake and Bioaccumulation in Pisum sativum L. (Green Pea) Analyzed via Dark-Field Microscopy, Infrared Spectroscopy, and Principal Component Analysis Combined with Machine Learning. Agronomy 2024, 14, 1473. https://doi.org/10.3390/agronomy14071473

Chandran, P., Riviere, J. E., & Monteiro-Riviere, N. A. (2017). Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology, 11(4), 507–519. https://doi.org/10.1080/17435390.2017.1314036

Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles - friends or enemies?. International journal of environmental health research, 32(4), 885–901. https://doi.org/10.1080/09603123.2020.1805415

d'Amora, M., Raffa, V., De Angelis, F., & Tantussi, F. (2021). Toxicological Profile of Plasmonic Nanoparticles in Zebrafish Model. International journal of molecular sciences, 22(12), 6372. https://doi.org/10.3390/ijms22126372

Daraee, H., Eatemadi, A., Abbasi, E., Fekri Aval, S., Kouhi, M., & Akbarzadeh, A. (2014). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 410–422. https://doi.org/10.3109/21691401.2014.955107

D'souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. ExperYasmt opinion on drug delivery, 13(9), 1257–1275. https://doi.org/10.1080/17425247.2016.1182485

Endes, C., Camarero-Espinosa, S., Mueller, S., Foster, E. J., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., & Clift, M. J. (2016). A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of nanobiotechnology, 14(1), 78. https://doi.org/10.1186/s12951-016-0230-9

Fernández-Serra, R., Lekouaghet, A., Peracho, L., Yonesi, M., Alcázar, A., Chioua, M., Marco-Contelles, J., Pérez-Rigueiro, J., Rojo, F. J., Panetsos, F., Guinea, G. V., & González-Nieto, D. (2024). Permselectivity of Silk Fibroin Hydrogels for Advanced Drug Delivery Neurotherapies. Biomacromolecules, 25(8), 5233–5250. https://doi.org/10.1021/acs.biomac.4c00629

Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

Hao, L., Zhou, Q., Piao, Y., Zhou, Z., Tang, J., & Shen, Y. (2021). Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 330, 362–371. https://doi.org/10.1016/j.jconrel.2020.12.035

Kaltbeitzel, J., & Wich, P. R. (2023). Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie (International ed. in English), 62(44), e202216097. https://doi.org/10.1002/anie.202216097

Knop, K., Hoogenboom, R., Fischer, D. and Schubert, U. (2010), Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition, 49(36), 6288-6308. https://doi.org/10.1002/anie.200902672

Li, H., Zhu, J., Xu, Y. W., Mou, F. F., Shan, X. L., Wang, Q. L., Liu, B. N., Ning, K., Liu, J. J., Wang, Y. C., Mi, J. X., Wei, X., Shao, S. J., Cui, G. H., Lu, R., & Guo, H. D. (2022). Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox biology, 54, 102384. https://doi.org/10.1016/j.redox.2022.102384

Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine : nanotechnology, biology, and medicine, 14(1), 1–12. https://doi.org/10.1016/j.nano.2017.08.011

MacCuaig, W. M., Samykutty, A., Foote, J., Luo, W., Filatenkov, A., Li, M., Houchen, C., Grizzle, W. E., & McNally, L. R. (2022). Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics, 14(5), 969. https://doi.org/10.3390/pharmaceutics14050969

Malhotra, N., Lee, J. S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T. R., & Hsiao, C. D. (2020). Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules (Basel, Switzerland), 25(14), 3159. https://doi.org/10.3390/molecules25143159

Mehdi-Sefiani, H., Granados-Carrera, C. M., Romero, A., Chicardi, E., Domínguez-Robles, J., & Perez-Puyana, V. M. (2024). Chitosan-Type-A-Gelatin Hydrogels Used as Potential Platforms in Tissue Engineering for Drug Delivery. Gels (Basel, Switzerland), 10(7), 419. https://doi.org/10.3390/gels10070419

Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L., & Jurowski, K. (2024). Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. International journal of molecular sciences, 25(7), 4057. https://doi.org/10.3390/ijms25074057

Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of controlled release : official journal of the Controlled Release Society, 149(1), 65–71. https://doi.org/10.1016/j.jconrel.2009.12.006

Pooresmaeil, M., & Namazi, H. (2021). Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydrate polymers, 258, 117654. https://doi.org/10.1016/j.carbpol.2021.117654

Quan, L., Xin, Y., Wu, X., & Ao, Q. (2022). Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers, 14(11), 2184. https://doi.org/10.3390/polym14112184

Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery, 7(9), 1063–1077. https://doi.org/10.1517/17425247.2010.502560

Rehman, A., Jafari, S. M., Tong, Q., Riaz, T., Assadpour, E., Aadil, R. M., Niazi, S., Khan, I. M., Shehzad, Q., Ali, A., & Khan, S. (2020). Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in colloid and interface science, 284, 102251. https://doi.org/10.1016/j.cis.2020.102251

Rosenholm, J. M., Sahlgren, C., Linden, M. (2010) Towards multifunctional, targeted drug delivery using mesoporous silica nanoparticles - opportunities and challenges. Nanoscale 2, 1870 - 1883. https://doi.org/10.1039/C0NR00156B

Siddique, S.; Chow, J.C.L. (2020). Gold Nanoparticles for Drug Delivery and Cancer Therapy. Applied Sciences, 10(11), 3824. https://doi.org/10.3390/app10113824

Singh, N., Jenkins, G. J., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews, 1, 10.3402/nano.v1i0.5358. https://doi.org/10.3402/nano.v1i0.5358

Shevtsov, M., Nikolaev, B., Marchenko, Y., Yakovleva, L., Skvortsov, N., Mazur, A., Tolstoy, P., Ryzhov, V., & Multhoff, G. (2018). Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). International journal of nanomedicine, 13, 1471–1482. https://doi.org/10.2147/IJN.S152461

Talarska, P., Boruczkowski, M., & Żurawski, J. (2021). Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials (Basel, Switzerland), 11(9), 2454. https://doi.org/10.3390/nano11092454

Tang, F., Li, L., & Chen, D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials (Deerfield Beach, Fla.), 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763

Thambi, T., You, D. G., Han, H. S., Deepagan, V. G., Jeon, S. M., Suh, Y. D., Choi, K. Y., Kim, K., Kwon, I. C., Yi, G. R., Lee, J. Y., Lee, D. S., & Park, J. H. (2014). Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Advanced healthcare materials, 3(11), 1829–1838. https://doi.org/10.1002/adhm.201300691

Truong, L., Zaikova, T., Baldock, B. L., Balik-Meisner, M., To, K., Reif, D. M., … Tanguay, R. L. (2019). Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish. Nanotoxicology, 13(7), 879–893. https://doi.org/10.1080/17435390.2019.1592259

Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. International journal of nanomedicine, 6, 765–774. https://doi.org/10.2147/IJN.S17296

Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. S., & Chen, G. (2015). Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today, 20(5), 595–601. https://doi.org/10.1016/j.drudis.2014.11.014

Wu, X., Xin, Y., Zhang, H., Quan, L., & Ao, Q. (2024). Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. International journal of nanomedicine, 19, 7415–7471. https://doi.org/10.2147/IJN.S460047

Yasmin, R., Shah, M., Khan., S. A., Ali, (2016) R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 6(2), 191-207, https://doi.org/10.1515/ntrev-2016-0009

Yeh, Y. C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880. https://doi.org/10.1039/c1nr11188d

Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., Huang, Y., Pan, X., & Wu, C. (2018). Mesoporous silica nanoparticles for drug and gene delivery. Acta pharmaceutica Sinica. B, 8(2), 165–177. https://doi.org/10.1016/j.apsb.2018.01.007

Published

11-30-2024

How to Cite

Ulhaq, A., Lilova, K., & Torremocha, V. (2024). Exploring the Optimized Function of Polymer Coated Nanoparticles: Applications in Drug Delivery Systems. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.8111

Issue

Section

HS Research Articles