Identifying Progression Pattern of Alzheimer’s Disease Using Longitudinal Clinical and Neuroimaging Biomarkers

Authors

  • Ann Song Choate Rosemary Hall

DOI:

https://doi.org/10.47611/jsrhs.v13i4.7950

Keywords:

Alzheimer’s Disease, Mixture of Gaussian Processes Model, Nonlinear, Heterogenous, Normalization

Abstract

Alzheimer’s disease is one of the most common neurodegenerative disorders worldwide. Therapeutics to treat or prevent Alzheimer’s disease progression has not been successful due to the possible heterogeneity of progression and response to treatment. The goal of this study was to determine whether there is a common pattern in Alzheimer’s Disease progression that can be used to guide the clinical trials and treatment. Longitudinal clinical and neuroimaging biomarkers data from Open Access Series of Imaging Studies were analyzed using an approach based on Mixture of Gaussian Processes Model to identify clusters that has similar pattern in progression. The approach enables non-parametric analyses with no assumptions on linearity and number of clusters. It was demonstrated that normalizing the patient’s own onset value yields better accuracy in stratifying patients by progression rate because it removes the systematic variations and imbalance induced by environmental and genetic differences among the patients. The clustering result showed that the Alzheimer’s Disease progression is nonlinear, suggesting that the initial progression rate should not be used to evaluate the future progression trajectory. It was demonstrated that the progression is heterogeneous among the patients within each biomarker and among biomarkers of each patient, indicating the importance of personalized treatment for individual patient. Additional analyses with more data to ensure the robustness of the clustering will provide neurologists a powerful tool to estimate the progression trajectory of each patient, with which a personalized treatment becomes possible.

Downloads

Download data is not yet available.

References or Bibliography

Albert, Y. L. (1984). On a Class of Bayesian Nonparametric Estimates: I. Density Estimates. The Annals of Statistics, 12(1), 351–357. doi: 10.1214/aos/1176346412

Deture, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegeneration, 14(32), 1–18. doi: doi.org/10.1186/s13024-019-0333-5

Doody, R. S., Pavlik, V., Massman, P., Rountree, S., Darby, E., & Chan, W. (2010). Predicting progression of Alzheimer’s disease. Alzheimer’s Research & Therapy, 2(1), 2. doi: 10.1186/alzrt25

Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430), 577–588. doi: doi.org/10.2307/2291069

Fisher, C. K., Smith, A. M., & Walsh, J. R. (2019). Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Sci. Rep., 9(1), 13622. doi: 10.1038/s41598-019-49656-2

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state.” Journal of Psychiatric Research, 12(3), 189–198. doi: 10.1016/0022-3956(75)90026-6

Fraenkel, B. (2022). MoGP: Mixture of Gaussian Processes Model for Sparse Longitudinal Data (https://github.com/fraenkel-lab/mogp).

Goyal, D., Tjandra, D., Migrino, R. . Q., Giordani, B., Syed, Z., & Wiens, J. (2018). Characterizing heterogeneity in the progression of Alzheimer’s disease using longitudinal clinical and neuroimaging biomarkers. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 629–637. doi: 10.1016/j.dadm.2018.06.007

Hackeling, G. (2017). Mastering machine learning with scikit-learn. Birmingham: Packt.

Jack, C. R., & Holtzman, D. M. (2013). Biomarker Modeling of Alzheimer’s Disease. Neuron, 80(6), 1347–1358. doi: 10.1016/j.neuron.2013.12.003

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207–216. doi: 10.1016/S1474-4422(12)70291-0

Khan, T. (2016). Biomarkers in Alzheimer’s Disease. Cambridge: Elsevier Inc.

LaMontagne, P. J., Benzinger, T. L. S., Morris, J. C., Keefe, s., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A. G., Raichle, M. E., Cruchaga, C., & Marcus, D. (2019). OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. MedRxiv. doi: 10.1101/2019.12.13.19014902

Mehta, D., Jackson, R., Paul, G., Shi, J., & Sabbagh, M. (2017). Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opinion on Investigational Drugs, 26(6), 735–739. doi: 10.1080/13543784.2017.1323868

Meyer, P., Pichet, B. A., Gonneaud, J., Breitner, J., & Villeneuve, S. (2020). Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography. JMJA Neuro., 77(4), 508–516. doi: 10.1001/jamaneurol.2019.4749

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. doi: 10.1111/j.1365-2796.2004.01388.x

Peterson, K., Rudovic, O., Guerrero, R., & Picard, R. W. (2018). Personalized Gaussian Processes for future prediction of Alzheimer’s Disease progression. Arxiv.Org/Abs/1712.00181. doi: doi.org/10.48550/arXiv.1712.00181

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. (2013). The global prevalence of dementia, a systematic review and metaanalysis. Alzheimers Dement., 9(1), 63–75. doi: doi.org/10.1016/j.jalz.2012.11.007

Ramamoorthy, D, Severson, K., Ghosh, S., Sachs K.; Answer, A. L. S., Glass, J. D., Fournier, C. N., Pooled Resource Open-Access ALS Clinical Trials Consortium, ALS/MND Natural History Consortium, Herrington, T. M., Berry, J. D., Ng, K., & Fraenkel, E. (2022). Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data. Nat Comput Sci., 2(9), 605–616. doi: 10.1038/s43588-022-00299-w

Ramamoorthy, Divya, & Fraenkel, E. (2022). Machine learning approach finds nonlinear patterns of neurodegenerative disease progression. Nature Computational Science, 2(9), 565–566. doi: 10.1038/s43588-022-00300-6

Rasmussen, C. E., & Williams, C. K. (2005). Gaussian Processes for Machine Learning. Cambridge: MIT Press. doi: doi.org/10.7551/mitpress/3206.001.0001

Rasmussen, C., & Ghahramani, Z. (2001). Infinite Mixtures of Gaussian Process Experts. T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems (Vol. 14). Cambridge: MIT Press.

Silva-Spínola, A., Baldeiras, I., Arrais, J. P., & Santana, I. (2022). The Road to Personalized Medicine in Alzheimer’s Disease: The Use of Artificial Intelligence. Biomedicines, 10(2), 315. doi: 10.3390/biomedicines10020315

Song, A. (2022). Using Machine Learning to Forecast Progression from Cognitively Normal to Alzheimer’s Disease. Journal of Student Research, 12(2). doi: 10.1101/2019.12.13.19014902

Stern, Y., Liu, X., Albert, M., Brandt, J., Jacobs, D. M., Del Castillo-Castaneda, C., Marder, K., Bell, K., Sano, M., Bylsma, F., Lafleche, G., & Tsai, W. Y. (1996). Application of a growth curve approach to modeling the progression of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci., 51(4), M179–84. doi: 10.1093/gerona/51a.4.m179

Published

11-30-2024

How to Cite

Song, A. (2024). Identifying Progression Pattern of Alzheimer’s Disease Using Longitudinal Clinical and Neuroimaging Biomarkers. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.7950

Issue

Section

HS Research Projects