Neural Biomarker-Based Diagnosis of Alzheimer’s Disease: AI Models and Electroencephalography
DOI:
https://doi.org/10.47611/jsrhs.v13i4.7862Keywords:
AI, Support Vector Machines, Machine Learning, Electroencephalography, Alzheimer's, Alzheimer's Disease, Early Alzheimer's Disease Detection, Disease Detection, Early Screening, Cognitive Neuroscience, EEG, BrainwavesAbstract
Millions of people in the United States suffer from Alzheimer’s Disease (AD), an incurable form of dementia that continues to increase in prevalence. Current methods of AD diagnosis are limited to a late stage by which time the treatment options are limited, quality of life is poor, and cost of treatment is exponentially high. Early medical diagnosis of AD is difficult since standard non-invasive techniques require extensive tests and can still generate false positives and negatives, leading to misdiagnosis. This study proposes a supervised machine learning model trained on readily available Electroencephalography (EEG) patient data to diagnose potential AD patients. Relevant features were extracted and analyzed from an open-source EEG database, collected from 186 patients using the trained machine learning model of best fit. Our artificial intelligence (AI) model is an alternative to current late-state detection methods which require complex and risky procedures that can lead to inaccuracies. In addition, current algorithms require feature manipulation and sort through hundreds of thousands of raw EEG data points to obtain unreliable results. The results demonstrate that, given EEG data of 93 close-eyed patients, the trained logistic regression model- the machine learning model of best fit - achieved a sensitivity of 100% and overall accuracy of 87%, using data recordings of only eight second segments for each patient. This novel AD screening tool, with a cloud-based AI model, can be easily deployed at primary health care clinics tor screen patients for AD during their yearly clinical visits to increase early diagnosis.
Downloads
References or Bibliography
Alzheimer's Association. (2022). 2022 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 18(4). https://doi.org/10.1002/alz.12638
Alzheimer's Association. (2023). Facts and Figures. Alzheimer’s Disease and Dementia; Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/facts-figures
Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118(12), 2765–2773. https://doi.org/10.1016/j.clinph.2007.07.028
Beach, T. G., Monsell, S. E., Phillips, L. E., & Kukull, W. (2012). Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. Journal of Neuropathology & Experimental Neurology, 71(4), 266–273. https://doi.org/10.1097/nen.0b013e31824b211b
Dai, X.-J., Zhang, J., Wang, Y., Ma, Y., & Shi, K. (2021). Editorial: EEG and fMRI for Sleep and Sleep Disorders–Mechanisms and Clinical Implications. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.749620
Ein Shoka, A. A., Dessouky, M. M., El-Sayed, A., & Hemdan, E. E.-D. (2023). EEG seizure detection: concepts, techniques, challenges, and future trends. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-15052-2
Emmady, P. D., & Tadi, P. (2022). Major Neurocognitive Disorder (Dementia). PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557444/
Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-022-00184-w
Houmani, N., Vialatte, F., Gallego-Jutglà, E., Dreyfus, G., Nguyen-Michel, V.-H., Mariani, J., & Kinugawa, K. (2018). Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework. PLOS ONE, 13(3), e0193607. https://doi.org/10.1371/journal.pone.0193607
How Is Alzheimer’s Disease Treated? (2023). National Institute on Aging. https://www.nia.nih.gov/health/alzheimers-treatment/how-alzheimers-disease-treated
Hunter, C. A., Kirson, N. Y., Desai, U., Cummings, A. K. G., Faries, D. E., & Birnbaum, H. G. (2015). Medical costs of Alzheimer’s disease misdiagnosis among US Medicare beneficiaries. Alzheimer’s & Dementia, 11(8), 887–895. https://doi.org/10.1016/j.jalz.2015.06.1889
Ianof, J. N., & Anghinah, R. (2017). Traumatic brain injury: An EEG point of view. Dementia & Neuropsychologia, 11(1), 3–5. https://doi.org/10.1590/1980-57642016dn11-010002
Jiao, B., Li, R., Zhou, H., Qing, K., Liu, H., Pan, H., Lei, Y., Fu, W., Wang, X., Xiao, X., Liu, X., Yang, Q., Liao, X., Zhou, Y., Fang, L., Dong, Y., Yang, Y., Jiang, H., Huang, S., & Shen, L. (2023). Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology. Alzheimer’s Research & Therapy, 15(1). https://doi.org/10.1186/s13195-023-01181-1
Johns Hopkins Medicine. (2019). Electroencephalogram (EEG). John Hopkins Medicine. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
GenerateEEGBands. GitHub. https://github.com/AlphaIsGoated/GenerateEEGBands
Lizio, R., Vecchio, F., Frisoni, G. B., Ferri, R., Rodriguez, G., & Babiloni, C. (2011). Electroencephalographic Rhythms in Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2011, 1–11. https://doi.org/10.4061/2011/927573
Mayo Clinic . (2018). EEG (electroencephalogram) - Mayo Clinic. Mayoclinic.org. https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875
Morley, A. “10-20 System EEG Placement.” Www.sleep.pitt.edu, 2016, www.sleep.pitt.edu/wp-content/uploads/2020/03/10-20-system-el.pdf. Accessed 8 Jan. 2024.
Murphy, M. P., & LeVine, H. (2010). Alzheimer’s Disease and the Amyloid-β Peptide. Journal of Alzheimer’s Disease, 19(1), 311–323. https://doi.org/10.3233/jad-2010-1221
National Health Service. (2019). Electroencephalogram (EEG). NHS. https://www.nhs.uk/conditions/electroencephalogram/
Nayak, C. S., & Anilkumar, A. C. (2019). EEG Normal Waveforms. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539805/
O’Neil, B., Prichap, L., Roseanne, N., & Chabot, R. (2011). Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries. Western Journal of Emergency Medicine, 13(5), 394–400. https://doi.org/10.5811/westjem.2011.12.6815
Paraskevas, G. P., & Kapaki, E. (2021). Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease in the Era of Disease-Modifying Treatments. Brain Sciences, 11(10), 1258. https://doi.org/10.3390/brainsci11101258
Rayi, A., & Murr, N. (2021). Electroencephalogram. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK563295/
Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 68(18), 1501–1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
Shaw, L. M., Arias, J., Blennow, K., Galasko, D., Molinuevo, J. L., Salloway, S., Schindler, S., Carrillo, M. C., Hendrix, J. A., Ross, A., Illes, J., Ramus, C., & Fifer, S. (2018). Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimer’s & Dementia, 14(11), 1505–1521. https://doi.org/10.1016/j.jalz.2018.07.220
Shipley, S. M., Frederick, M. C., Filley, C. M., & Kluger, B. M. (2013). Potential for misdiagnosis in community-acquired PET scans for dementia. Neurology: Clinical Practice, 3(4), 305–312. https://doi.org/10.1212/cpj.0b013e318296f2df
Smailovic, U., & Jelic, V. (2019). Neurophysiological Markers of Alzheimer’s Disease: Quantitative EEG Approach. Neurology and Therapy, 8(S2), 37–55. https://doi.org/10.1007/s40120-019-00169-0
St, E. K., Frey, L. C., Britton, J. W., Frey, L. C., Hopp, J. L., Pearce Korb, Koubeissi, M. Z., Lievens, W. E., Pestana-Knight, E. M., & St, E. K. (2016). Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. American Epilepsy Society. https://www.ncbi.nlm.nih.gov/books/NBK390346/
Stern. (2002). Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport, 2487–2492. https://doi.org/10.1097/01.wnr.0000047685.08940.d0
Subramanian, J., Savage, J. C., & Tremblay, M.-È. (2020). Synaptic Loss in Alzheimer’s Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.592607
Trzepacz, P. T., Hochstetler, H., Wang, S., Walker, B., & Saykin, A. J. (2015). Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC Geriatrics, 15(1). https://doi.org/10.1186/s12877-015-0103-3
Tudor, M., Tudor, L., & Tudor, K. I. (2005). [Hans Berger (1873-1941)--the history of electroencephalography]. Acta Medica Croatica: Casopis Hravatske Akademije Medicinskih Znanosti, 59(4), 307–313. https://pubmed.ncbi.nlm.nih.gov/16334737/
Vicchietti, M., Ramos, F. M., Betting, L.E., & Andriana S. L. O. Campanharo. (2023). Computational methods of EEG signals analysis for Alzheimer’s disease classification. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32664-8
Vichianin, Y., Khummongkol, A., Chiewvit, P., Raksthaput, A., Chaichanettee, S., Aoonkaew, N., & Senanarong, V. (2021). Accuracy of support-vector machines for diagnosis of alzheimer’s disease, using volume of Hojjat Adeli, Samanwoy Ghosh-Dastidar, & Nahid Dadmehr. (2005). Alzheimer’s Disease: Models of Computation and Analysis of EEGs. Clinical Eeg and Neuroscience, 36(3), 131–140. https://doi.org/10.1177/155005940503600303
Wong, D. F., Maini, A., Rousset, O. G., & Brašić, J. R. (2003). Positron Emission Tomography. Alcohol Research & Health, 27(2), 161–173. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668888/
Xia, W., Zhang, R., Zhang, X., & Usman, M. (2023). A novel method for diagnosing Alzheimer’s disease using deep pyramid CNN based on EEG signals. Heliyon, 9(4), e14858. https://doi.org/10.1016/j.heliyon.2023.e14858
Published
How to Cite
Issue
Section
Copyright (c) 2024 Shrey Kumar; Mr.Zupan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


