What are the Key Technological and Logistical Challenges in Harvesting and Processing Algae for Biofuel Production, and How Can They Be Overcome?
DOI:
https://doi.org/10.47611/jsrhs.v13i4.7769Keywords:
Alternative Fuel; Biodiesel; Microalgae Biofuel; Cultivation; Harvesting; Oil ExtractionAbstract
Rising fossil fuel consumption worsens ecological destruction and causes changes to renewable energy sources. Microalgae for biodiesel production can emerge as a sustainable solution by bypassing the constraints of land and water associated with traditional biofuels. Cultivation has changed to incorporate optimized photobioreactors and wastewater synergies, while harvesting and lipid extraction techniques have improved to lower environmental footprints through electro-coagulation-flocculation and supercritical CO2 extraction, among others. These technological strides are summarized in this review, showing how selective breeding, genetic engineering, and integrated biorefinery approaches enhance the economic feasibility of algae-based biofuel. An interdisciplinary approach is required to magnify algae’s role in the future of sustainable energy. Research and policy support has been driving the progression of microalgae biofuels toward carbon neutrality, which positions algae as a global player in the quest for energy independence.
Downloads
References or Bibliography
References
(1) Elzen, M. D.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A. F.; Olivier, J. G. J.; Roelfsema, M.; Van Soest, H. Greenhouse Gas Emissions from Current and Enhanced Policies of China until 2030: Can Emissions Peak before 2030? Energy Policy 2016, 89, 224–236. https://doi.org/10.1016/j.enpol.2015.11.030.
(2) Saad, M. G.; Dosoky, N. S.; Zoromba, M. S.; Shafik, H. M. Algal Biofuels: Current Status and Key Challenges. Energies 2019, 12 (10), 1920. https://doi.org/10.3390/en12101920.
(3) Zhang, S.; Zhang, L.; Li, X. A Review on Biodiesel Production from Microalgae: Influencing Parameters and Recent Advanced Technologies. Front. Microbiol. 2022, 13. https://doi.org/10.3389/fmicb.2022.970028.
(4) Saad, M. G.; Dosoky, N. S.; Zoromba, M. S.; Shafik, H. M. Algal Biofuels: Current Status and Key Challenges. Energies 2019, 12 (10), 1920. https://doi.org/10.3390/en12101920.
(5) Narala, R. R.; Garg, S.; Sharma, K. K.; Thomas-Hall, S. R.; Deme, M.; Li, Y.; Schenk, P. M. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Front. Energy Res. 2016, 4. https://doi.org/10.3389/fenrg.2016.00029.
(6) Kröger, M.; Müller-Langer, F. Review on Possible Algal-Biofuel Production Processes. Biofuels 2012, 3 (3), 333–349. https://doi.org/10.4155/bfs.12.14.
(7) González‐López, C. V.; Acién Fernández, F. G.; Fernández‐Sevilla, J. M.; Sánchez Fernández, J. F.; Molina Grima, E. Development of a Process for Efficient Use of CO 2 from Flue Gases in the Production of Photosynthetic Microorganisms. Biotechnol. Bioeng. 2012, 109 (7), 1637–1650. https://doi.org/10.1002/bit.24446.
(8) Menegazzo, M. L.; Fonseca, G. G. Biomass Recovery and Lipid Extraction Processes for Microalgae Biofuels Production: A Review. Renew. Sustain. Energy Rev. 2019, 107, 87–107. https://doi.org/10.1016/j.rser.2019.01.064.
(9) Gao, F.; Yang, H.-L.; Li, C.; Peng, Y.-Y.; Lu, M.-M.; Jin, W.-H.; Bao, J.-J.; Guo, Y.-M. Effect of Organic Carbon to Nitrogen Ratio in Wastewater on Growth, Nutrient Uptake and Lipid Accumulation of a Mixotrophic Microalgae Chlorella Sp. Bioresour. Technol. 2019, 282, 118–124. https://doi.org/10.1016/j.biortech.2019.03.011.
(10) Wu, Q.; Guo, L.; Li, X.; Wang, Y. Effect of Phosphorus Concentration and Light/Dark Condition on Phosphorus Uptake and Distribution with Microalgae. Bioresour. Technol. 2021, 340, 125745. https://doi.org/10.1016/j.biortech.2021.125745.
(11) Yang, Z.-Y.; Gao, F.; Liu, J.-Z.; Yang, J.-S.; Liu, M.; Ge, Y.-M.; Chen, D.-Z.; Chen, J.-M. Improving Sedimentation and Lipid Production of Microalgae in the Photobioreactor Using Saline Wastewater. Bioresour. Technol. 2022, 347, 126392. https://doi.org/10.1016/j.biortech.2021.126392.
(12) Yan, C.; Zhu, L.; Wang, Y. Photosynthetic CO2 Uptake by Microalgae for Biogas Upgrading and Simultaneously Biogas Slurry Decontamination by Using of Microalgae Photobioreactor under Various Light Wavelengths, Light Intensities, and Photoperiods. Appl. Energy 2016, 178, 9–18. https://doi.org/10.1016/j.apenergy.2016.06.012.
(13) Xin, L.; Hong-ying, H.; Yu-ping, Z. Growth and Lipid Accumulation Properties of a Freshwater Microalga Scenedesmus Sp. under Different Cultivation Temperature. Bioresour. Technol. 2011, 102 (3), 3098–3102. https://doi.org/10.1016/j.biortech.2010.10.055.
(14) Herrero, M.; Mendiola, J. A.; Cifuentes, A.; Ibáñez, E. Supercritical Fluid Extraction: Recent Advances and Applications. J. Chromatogr. A 2010, 1217 (16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019.
(15) Tazikeh, S.; Zendehboudi, S.; Ghafoori, S.; Lohi, A.; Mahinpey, N. Algal Bioenergy Production and Utilization: Technologies, Challenges, and Prospects. J. Environ. Chem. Eng. 2022, 10 (3), 107863. https://doi.org/10.1016/j.jece.2022.107863.
(16) Hoang, A. T.; Sirohi, R.; Pandey, A.; Nižetić, S.; Lam, S. S.; Chen, W.-H.; Luque, R.; Thomas, S.; Arıcı, M.; Pham, V. V. Biofuel Production from Microalgae: Challenges and Chances. Phytochem. Rev. 2023, 22 (4), 1089–1126. https://doi.org/10.1007/s11101-022-09819-y.
(17) Ambaye, T. G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; Van Hullebusch, E. D.; Rtimi, S. Emerging Technologies for Biofuel Production: A Critical Review on Recent Progress, Challenges and Perspectives. J. Environ. Manage. 2021, 290, 112627. https://doi.org/10.1016/j.jenvman.2021.112627.
(18) Griffiths, G.; Hossain, A. K.; Sharma, V.; Duraisamy, G. Key Targets for Improving Algal Biofuel Production. Clean Technol. 2021, 3 (4), 711–742. https://doi.org/10.3390/cleantechnol3040043.
(19) Uwineza, P. A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25 (17), 3847. https://doi.org/10.3390/molecules25173847.
(20) Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325.
(21) Streimikyte, P.; Viskelis, P.; Viskelis, J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022, 23 (4), 2359. https://doi.org/10.3390/ijms23042359.
(22) Cerdá-Bernad, D.; Baixinho, J. P.; Fernández, N.; Frutos, M. J. Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus Sativus L.) Floral By-Products. Foods 2022, 11 (15), 2335. https://doi.org/10.3390/foods11152335.
(23) Seo, C.-S.; Kim, J.-H.; Shin, H.-K. Optimization of the Extraction Process for the Seven Bioactive Compounds in Yukmijihwang-Tang, an Herbal Formula, Using Response Surface Methodology. Pharmacogn. Mag. 2014, 10 (39), 606. https://doi.org/10.4103/0973-1296.139798.
(24) Qiao, J.; Cui, H.; Wang, M.; Fu, X.; Wang, X.; Li, X.; Huang, H. Integrated Biorefinery Approaches for the Industrialization of Cellulosic Ethanol Fuel. Bioresour. Technol. 2022, 360, 127516. https://doi.org/10.1016/j.biortech.2022.127516.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Jionghao Wu

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


