The Efficacy of Music Therapy as an Alternate Treatment for Parkinson’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v13i4.7726Keywords:
Parkinson's Disease, Levodopa, Music Therapy, Dopamine, Serotonin, Motor Movements, MoodAbstract
Parkinson’s Disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron loss, which negatively impacts motor movements and mood (Kalia & Lang, 2015). As a result, dopamine, serotonin, and tropomyosin receptor kinase levels decrease (Politis & Niccolini, 2015). There is no cure for PD (Lew, 2007), but by understanding the effects of music therapy and its mechanisms, we can use music therapy as an adjunctive or alternate treatment for PD.
Downloads
References or Bibliography
Akiyama, K., & Sutoo, D. ’etsu. (2011). Effect of different frequencies of music on blood pressure regulation in spontaneously hypertensive rats. Neuroscience Letters, 487(1), 58–60.
Alexander, G. E. (2004). Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience, 6(3), 259–280.
Ashoori, A., Eagleman, D. M., & Jankovic, J. (2015). Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson’s Disease. Frontiers in Neurology, 6, 234.
Chikahisa, S., Sei, H., Morishima, M., Sano, A., Kitaoka, K., Nakaya, Y., & Morita, Y. (2006). Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behavioural Brain Research, 169(2), 312–319.
Chu, H., Yang, C.-Y., Lin, Y., Ou, K.-L., Lee, T.-Y., O’Brien, A. P., & Chou, K.-R. (2014). The impact of group music therapy on depression and cognition in elderly persons with dementia: a randomized controlled study. Biological Research for Nursing, 16(2), 209–217.
Cosgrove, J., Alty, J. E., & Jamieson, S. (2015). Cognitive impairment in Parkinson’s disease. Postgraduate Medical Journal, 91(1074), 212–220.
Fox, S. H., Chuang, R., & Brotchie, J. M. (2009). Serotonin and Parkinson’s disease: On movement, mood, and madness. Movement Disorders: Official Journal of the Movement Disorder Society, 24(9), 1255–1266.
Gökçek, E., & Kaydu, A. (2020). The effects of music therapy in patients undergoing septorhinoplasty surgery under general anesthesia. Brazilian Journal of Otorhinolaryngology, 86(4), 419–426.
Grahn, J. A. (2009). The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Annals of the New York Academy of Sciences, 1169, 35–45.
Grahn, J. A., & Watson, S. L. (2013). Perspectives on rhythm processing in motor regions of the brain. Music Therapy Perspectives, 31(1), 25–30.
Grenier, A. S., Lafontaine, L., & Sharp, A. (2021). Use of Music Therapy as an Audiological Rehabilitation Tool in the Elderly Population: A Mini-Review. Frontiers in Neuroscience, 15, 662087.
Haslam, R., Heiderscheit, A., & Himmerich, H. (2022). A Systematic Review of Scientific Studies on the Effects of Music in People with Personality Disorders. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192315434
Hung, P.-L., Wu, K. L. H., Chen, C.-J., Siu, K.-K., Hsin, Y.-J., Wang, L.-J., & Wang, F.-S. (2021). Music-Based Intervention Ameliorates -Loss-Mediated Sociability Repression in Mice through the Prefrontal Cortex Pathway. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22137174
Jellinger, K. A. (2014). The pathomechanisms underlying Parkinson’s disease. Expert Review of Neurotherapeutics, 14(2), 199–215.
Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912.
King, L. K., Almeida, Q. J., & Ahonen, H. (2009). Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation, 25(4), 297–306.
Kouli, A., Torsney, K. M., & Kuan, W.-L. (2018). Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In T. B. Stoker & J. C. Greenland (Eds.), Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications.
Lew, M. (2007). Overview of Parkinson’s disease. Pharmacotherapy, 27(12 Pt 2), 155S – 160S.
Lindenbach, D., & Bishop, C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2737–2750.
Matziorinis, A. M., & Koelsch, S. (2022). The promise of music therapy for Alzheimer’s disease: A review. Annals of the New York Academy of Sciences, 1516(1), 11–17.
Monfrini, E., Arienti, F., Rinchetti, P., Lotti, F., & Riboldi, G. M. (2023). Brain Calcifications: Genetic, Molecular, and Clinical Aspects. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108995
Moraes, M. M., Rabelo, P. C. R., Pinto, V. A., Pires, W., Wanner, S. P., Szawka, R. E., & Soares, D. D. (2018). Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control. Neuroscience Letters, 673, 73–78.
Morris, I. B., Vasudevan, E., Schedel, M., Weymouth, D., Loomis, J., Pinkhasov, T., & Muratori, L. M. (2019). Music to One’s Ears: Familiarity and Music Engagement in People With Parkinson's Disease. Frontiers in Neuroscience, 13, 661.
Müller, T., & Russ, H. (2006). Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opinion on Pharmacotherapy, 7(13), 1715–1730.
Pan-Montojo, F., Schwarz, M., Winkler, C., Arnhold, M., O’Sullivan, G. A., Pal, A., Said, J., Marsico, G., Verbavatz, J.-M., Rodrigo-Angulo, M., Gille, G., Funk, R. H. W., & Reichmann, H. (2012). Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports, 2, 898.
Parkinson’s Disease: Challenges, Progress, and Promise. (2004).
Politis, M., & Niccolini, F. (2015). Serotonin in Parkinson’s disease. Behavioural Brain Research, 277, 136–145.
Politis, M., Wu, K., Molloy, S., G Bain, P., Chaudhuri, K. R., & Piccini, P. (2010). Parkinson’s disease symptoms: the patient's perspective. Movement Disorders: Official Journal of the Movement Disorder Society, 25(11), 1646–1651.
Polston, J. E., Rubbinaccio, H. Y., Morra, J. T., Sell, E. M., & Glick, S. D. (2011). Music and methamphetamine: conditioned cue-induced increases in locomotor activity and dopamine release in rats. Pharmacology, Biochemistry, and Behavior, 98(1), 54–61.
Ramesh, S., & Arachchige, A. S. P. M. (2023). Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neuroscience, 10(3), 200–231.
Robert, C., Wilson, C. S., Lipton, R. B., & Arreto, C.-D. (2019). Parkinson’s disease: Evolution of the scientific literature from 1983 to 2017 by countries and journals. Parkinsonism & Related Disorders, 61, 10–18.
Salat, D., & Tolosa, E. (2013). Levodopa in the treatment of Parkinson’s disease: current status and new developments. Journal of Parkinson’s Disease, 3(3), 255–269.
Sasaki-Adams, D. M., & Kelley, A. E. (2001). Serotonin-dopamine interactions in the control of conditioned reinforcement and motor behavior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 25(3), 440–452.
Schaefer, R. S. (2014). Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1658), 20130402.
Speranza, L., di Porzio, U., Viggiano, D., de Donato, A., & Volpicelli, F. (2021). Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells , 10(4). https://doi.org/10.3390/cells10040735
Sutoo, D., & Akiyama, K. (1997). Regulation of blood pressure with calcium-dependent dopamine synthesizing system in the brain and its related phenomena. Brain Research. Brain Research Reviews, 25(1), 1–26.
Sutoo, D. ’etsu, & Akiyama, K. (2004). Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation. Brain Research, 1016(2), 255–262.
Thaut, M. H., Trimarchi, P. D., & Parsons, L. M. (2014). Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern. Brain Sciences, 4(2), 428–452.
Truong, D., & Bhidayasiri, R. (2016). Parkinson’s disease. In International Neurology (pp. 188–196). John Wiley & Sons, Ltd.
Vernier, P., Moret, F., Callier, S., Snapyan, M., Wersinger, C., & Sidhu, A. (2004). The degeneration of dopamine neurons in Parkinson’s disease: insights from embryology and evolution of the mesostriatocortical system. Annals of the New York Academy of Sciences, 1035, 231–249.
West, P. D., & Evans, E. F. (1990). Early detection of hearing damage in young listeners resulting from exposure to amplified music. British Journal of Audiology, 24(2), 89–103.
Zhao, F., Manchaiah, V. K. C., French, D., & Price, S. M. (2010). Music exposure and hearing disorders: an overview. International Journal of Audiology, 49(1), 54–64.
Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses. Frontiers in Neuroscience, 12, 95.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Ishaan Rath; Nicole Katchur

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


