Inositol Metabolite Depletion Induces Hallmarks of ER Stress Without Activating the UPR
DOI:
https://doi.org/10.47611/jsrhs.v13i4.7708Keywords:
Unfolded Protein Response, Inositol, Endoplasmic Reticulum, Reactive Oxygen Species, Membrane Aberrancy, Phosphoinositide, Membrane Stress, Redox Stress, ER StressAbstract
The unfolded protein response (UPR) is a transcriptional pathway that responds to unfolded proteins in the endoplasmic reticulum (ER) through three well-defined pathways. However, the production of reactive oxygen species (ROS), membrane aberrancy, and the depletion of the sugar, lipid component, and signaling molecule inositol are also linked to UPR activation. While the mechanism for ROS-mediated UPR activation is understood, the mechanism for membrane aberrancy and inositol depletion—believed to be the same—is much less clear. Given inositol depletion’s reduction of several inositol metabolites with divergent roles in the UPR, our study of the transcriptomic changes due to the metabolic depletion of certain inositols attempts to illuminate the poorly understood connections between inositol depletion, membrane aberrancy, and the UPR. We amalgamated and filtered RNA sequencing data from 19 studies knocking out inositol metabolic enzymes and conducted functional analyses. Our results indicated that while protein degradation, membrane stress, and redox stress—all hallmarks of ER stress and heavily associated with the UPR—were transcriptionally supported by inositol metabolite depletion, the UPR was not activated. As a result, inositol depletion studies could carry a confounding noise due to the depletion of inositol products that obfuscates attempts to define inositol’s connections with membrane aberrancy and the UPR. The results of our study urge further research into the consequences of inositol metabolite depletion both to vitiate the resulting concerns about inositol depletion studies and to explain the lack of UPR activation even with the induction of ER stress hallmarks associated with UPR activation.
Downloads
References or Bibliography
Balla T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological reviews, 93(3), 1019–1137. https://doi.org/10.1152/physrev.00028.2012
Benjamin, B., Goldgur, Y., Jork, N., Jessen, H. J., Schwer, B., & Shuman, S. (2022). Structures of fission yeast inositol pyrophosphate kinase asp1 in ligand-free, substrate-bound, and product-bound states. MBio, 13(6). https://doi.org/10.1128/mbio.03087-22
Bissaro, B., Várnai, A., Røhr, Å. K., & Eijsink, V. G. H. (2018). Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiology and Molecular Biology Reviews, 82(4). https://doi.org/10.1128/mmbr.00029-18
Burke, J. E., Triscott, J., Emerling, B. M., & Hammond, G. R. V. (2022). Beyond pi3ks: Targeting phosphoinositide kinases in disease. Nature Reviews Drug Discovery, 22(5), 357-386. https://doi.org/10.1038/s41573-022-00582-5
Campos, C. B. de, Zhu, Y. X., Sepetov, N., Romanov, S., Bruins, L. A., Shi, C.-X., Stein, C. K., Petit, J. L., Polito, A. N., Sharik, M. E., Meermeier, E. W., Ahmann, G. J., Armenta, I. D. L., Kruse, J., Bergsagel, P. L., Chesi, M., Meurice, N., Braggio, E., & Stewart, A. K. (2019). Identification of pikfyve kinase as a target in multiple myeloma. Haematologica, 105(6), 1641-1649. https://doi.org/10.3324/haematol.2019.222729
Cheung, S. K. K., Kwok, J., Or, P. M. Y., Wong, C. W., Feng, B., Choy, K. W., Chang, R. C. C., Burbach, J. P. H., Cheng, A. S. L., & Chan, A. M. (2023). Neuropathological signatures revealed by transcriptomic and proteomic analysis in pten-deficient mouse models. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33869-7
Cox, J. S., Chapman, R. E., & Walter, P. (1997). The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Molecular biology of the cell, 8(9), 1805–1814. https://doi.org/10.1091/mbc.8.9.1805
De Block, J., Szopinska, A., Guerriat, B., Dodzian, J., Villers, J., Hochstenbach, J.-F., & Morsomme, P. (2015). The yeast pmp3p has a significant role in plasma membrane organization. Journal of Cell Science. https://doi.org/10.1242/jcs.173211
Deranieh, Rania M., and Miriam L. Greenberg. “Cellular Consequences of Inositol Depletion.” Biochemical Society Transactions, vol. 37, no. 5, 21 Sept. 2009, pp. 1099-103, https://doi.org/10.1042/bst0371099
Deranieh, R. M., He, Q., Caruso, J. A., & Greenberg, M. L. (2013). Phosphorylation regulates myo-Inositol-3-phosphate synthase. Journal of Biological Chemistry, 288(37), 26822-26833. https://doi.org/10.1074/jbc.m113.479121
De-Souza, E. A., Pimentel, F. S. A., Machado, C. M., Martins, L. S., da-Silva, W. S., Montero-Lomelí, M., & Masuda, C. A. (2013). The unfolded protein has a protective role in yeast models of classic galactosemia. Models & Mechanisms. https://doi.org/10.1242/dmm.012641
Dhandayuthapani, S., Jagannath, C., Nino, C., Saikolappan, S., & Sasindran, S. J. (2009). Methionine sulfoxide reductase B (MsrB) of mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis, 89, S26-S32. https://doi.org/10.1016/s1472-9792(09)70008-3
Falkenburger, B. H., Jensen, J. B., Dickson, E. J., Suh, B. C., & Hille, B. (2010). Phosphoinositides: lipid regulators of membrane proteins. The Journal of physiology, 588(Pt 17), 3179–3185. https://doi.org/10.1113/jphysiol.2010.192153
Figueiredo, J., Dias, W., Mendonça-Previato, L., Previato, J., & Heise, N. (2005). Characterization of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi. Biochemical Journal, 387(2), 519-529. https://doi.org/10.1042/bj20041842
Fradet, A., & Fitzgerald, J. (2016). INPPL1 gene mutations in opsismodysplasia. Journal of Human Genetics, 62(2), 135-140. https://doi.org/10.1038/jhg.2016.119
Halbleib, K., Pesek, K., Covino, R., Hofbauer, H. F., Wunnicke, D., Hänelt, I., Hummer, G., & Ernst, R. (2017). Activation of the Unfolded Protein Response by Lipid Bilayer Stress. Molecular cell, 67(4), 673–684.e8. https://doi.org/10.1016/j.molcel.2017.06.012
Harbauer, A. B., Hees, J. T., Wanderoy, S., Segura, I., Gibbs, W., Cheng, Y., Ordonez, M., Cai, Z., Cartoni, R., Ashrafi, G., Wang, C., Perocchi, F., He, Z., & Schwarz, T. L. (2022). Neuronal mitochondria transport pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron, 110(9), 1516-1531.e9. https://doi.org/10.1016/j.neuron.2022.01.035
Hasegawa, J., Strunk, B. S., & Weisman, L. S. (2017). PI5P and PI(3,5)P2: Minor, but essential phosphoinositides. Cell Structure and Function, 42(1), 49-60. https://doi.org/10.1247/csf.17003
Heaver, S. L., Le, H. H., Tang, P., Baslé, A., Mirretta Barone, C., Vu, D. L., Waters, J. L., Marles-Wright, J., Johnson, E. L., Campopiano, D. J., & Ley, R. E. (2022). Characterization of inositol lipid metabolism in gut-associated bacteroidetes. Nature Microbiology, 7(7), 986-1000. https://doi.org/10.1038/s41564-022-01152-6
Higgins, R., Gendron, J., Rising, L., Mak, R., Webb, K., Kaiser, S., Zuzow, N., Riviere, P., Yang, B., Fenech, E., Tang, X., Lindsay, S., Christianson, J., Hampton, R., Wasserman, S., & Bennett, E. (2015). The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Molecular Cell, 59(1), 35-49. https://doi.org/10.1016/j.molcel.2015.04.026
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. https://doi.org/10.1038/nprot.2008.211
Iguchi, A., Takatori, S., Kimura, S., Muneto, H., Wang, K., Etani, H., Ito, G., Sato, H., Hori, Y., Sasaki, J., Saito, T., Saido, T. C., Ikezu, T., Takai, T., Sasaki, T., & Tomita, T. (2023). INPP5D modulates trem2 loss-of-function phenotypes in a β-amyloidosis mouse model. IScience, 26(4), 106375. https://doi.org/10.1016/j.isci.2023.106375
Iyer, J., Singh, M. D., Jensen, M., Patel, P., Pizzo, L., Huber, E., Koerselman, H., Weiner, A. T., Lepanto, P., Vadodaria, K., Kubina, A., Wang, Q., Talbert, A., Yennawar, S., Badano, J., Manak, J. R., Rolls, M. M., Krishnan, A., & Girirajan, S. (2018). Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in drosophila melanogaster. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04882-6
Jadhav, S., Russo, S., Cottier, S., Schneiter, R., Cowart, A., & Greenberg, M. L. (2016). Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels. The Journal of biological chemistry, 291(42), 22253–22261. https://doi.org/10.1074/jbc.M116.752634
Jesch, S. A., Zhao, X., Wells, M. T., & Henry, S. A. (2005). Genome-wide analysis reveals inositol, not choline, as the major effector of ino2p-ino4p and unfolded protein response target gene expression in yeast. Journal of Biological Chemistry, 280(10), 9106-9118. https://doi.org/10.1074/jbc.m411770200
Kader, J.-C. (1996). Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 627-654. https://doi.org/10.1146/annurev.arplant.47.1.627
Karagöz, G. E., Acosta-Alvear, D., & Walter, P. (2019). The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum. Cold Spring Harbor perspectives in biology, 11(9), a033886. https://doi.org/10.1101/cshperspect.a033886
Kim, Y. J., Hernandez, M. L., & Balla, T. (2013). Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends in cell biology, 23(6), 270–278. https://doi.org/10.1016/j.tcb.2013.01.009
Kolberg, L., Raudvere, U., Kuzmin, I., Adler, P., Vilo, J., & Peterson, H. (2023). G:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Research, 51(W1), W207-W212. https://doi.org/10.1093/nar/gkad347
Ladewig, E., Michelini, F., Jhaveri, K., Castel, P., Carmona, J., Fairchild, L., Zuniga, A. G., Arruabarrena-Aristorena, A., Cocco, E., Blawski, R., Kittane, S., Zhang, Y., Sallaku, M., Baldino, L., Hristidis, V., Chandarlapaty, S., Abdel-Wahab, O., Leslie, C., Scaltriti, M., & Toska, E. (2022). The oncogenic pi3k-induced transcriptomic landscape reveals key functions in splicing and gene expression regulation. Cancer Research, 82(12), 2269-2280. https://doi.org/10.1158/0008-5472.can-22-0446
Lajoie, P., Moir, R. D., Willis, I. M., & Snapp, E. L. (2012). Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Molecular biology of the cell, 23(5), 955–964. https://doi.org/10.1091/mbc.E11-12-0995
Li, G., Wu, Y., Zhang, Y., Wang, H., Li, M., He, D., Guan, W., & Yao, H. (2024). Research progress on phosphatidylinositol 4-kinase inhibitors. Biochemical Pharmacology, 220, 115993. https://doi.org/10.1016/j.bcp.2023.115993
López-Ribera, I., La Paz, J. L., Repiso, C., García, N., Miquel, M., Hernández, M. L., Martínez-Rivas, J. M., & Vicient, C. M. (2014). The evolutionary conserved oil body associated protein obap1 participates in the regulation of oil body size. Plant Physiology, 164(3), 1237-1249. https://doi.org/10.1104/pp.113.233221
Lykidis, A., Jackson, P. D., Rock, C. O., & Jackowski, S. (1997). The role of cdp-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. Journal of Biological Chemistry, 272(52), 33402-33409. https://doi.org/10.1074/jbc.272.52.33402
Maag, D., Maxwell, M. J., Hardesty, D. A., Boucher, K. L., Choudhari, N., Hanno, A. G., Ma, J. F., Snowman, A. S., Pietropaoli, J. W., Xu, R., Storm, P. B., Saiardi, A., Snyder, S. H., & Resnick, A. C. (2011). Inositol polyphosphate multikinase is a physiologic pi3-kinase that activates akt/pkb. Proceedings of the National Academy of Sciences, 108(4), 1391-1396. https://doi.org/10.1073/pnas.1017831108
Maekawa, M., Terasaka, S., Mochizuki, Y., Kawai, K., Ikeda, Y., Araki, N., Skolnik, E. Y., Taguchi, T., & Arai, H. (2014). Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proceedings of the National Academy of Sciences, 111(11). https://doi.org/10.1073/pnas.1311029111
Malek, M., Kielkowska, A., Chessa, T., Anderson, K. E., Barneda, D., Pir, P., Nakanishi, H., Eguchi, S., Koizumi, A., Sasaki, J., Juvin, V., Kiselev, V. Y., Niewczas, I., Gray, A., Valayer, A., Spensberger, D., Imbert, M., Felisbino, S., Habuchi, T., . . . Stephens, L. R. (2017). PTEN regulates pi(3,4)p2 signaling downstream of class I pi3k. Molecular Cell, 68(3), 566-580.e10. https://doi.org/10.1016/j.molcel.2017.09.024
Mansat, M., Kpotor, A. O., Chicanne, G., Picot, M., Mazars, A., Flores-Flores, R., Payrastre, B., Hnia, K., & Viaud, J. (2024). MTM1-mediated production of phosphatidylinositol 5-phosphate fuels the formation of podosome-like protrusions regulating myoblast fusion. Proceedings of the National Academy of Sciences, 121(23). https://doi.org/10.1073/pnas.2217971121
Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62(6). https://doi.org/10.1007/s00018-004-4464-6
Mielich-Süss, B., Schneider, J., & Lopez, D. (2013). Overproduction of flotillin influences cell differentiation and shape in bacillus subtilis. MBio, 4(6). https://doi.org/10.1128/mbio.00719-13
Naik, S., Wood, A. R., Ongenaert, M., Saidiyan, P., Elstak, E. D., Lanz, H. L., Stallen, J., Janssen, R., Smythe, E., & Erdmann, K. S. (2021). A 3D renal proximal tubule on chip model phenocopies lowe syndrome and dent II disease tubulopathy. International Journal of Molecular Sciences, 22(10), 5361. https://doi.org/10.3390/ijms22105361
Paranagama, M. P., Sakamoto, K., Amino, H., Awano, M., Miyoshi, H., & Kita, K. (2010). Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from ascaris suum mitochondrial complex II. Mitochondrion, 10(2), 158-165. https://doi.org/10.1016/j.mito.2009.12.145
Posor, Y., Jang, W. & Haucke, V. Phosphoinositides as membrane organizers. (2022). Nat Rev Mol Cell Biol 23, 797–816. https://doi.org/10.1038/s41580-022-00490-x
Promlek, T., Ishiwata-Kimata, Y., Shido, M., Sakuramoto, M., Kohno, K., & Kimata, Y. (2011). Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Molecular biology of the cell, 22(18), 3520–3532. https://doi.org/10.1091/mbc.E11-04-0295
Poxleitner, M., Rogers, S. W., Lacey Samuels, A., Browse, J., & Rogers, J. C. (2006). A role for caleosin in degradation of oil‐body storage lipid during seed germination. The Plant Journal, 47(6), 917-933. https://doi.org/10.1111/j.1365-313x.2006.02845.x
Qin, L., Zhou, Z., Li, Q., Zhai, C., Liu, L., Quilichini, T. D., Gao, P., Kessler, S. A., Jaillais, Y., Datla, R., Peng, G., Xiang, D., & Wei, Y. (2020). Specific recruitment of phosphoinositide species to the plant-pathogen interfacial membrane underlies arabidopsis susceptibility to fungal infection. The Plant Cell, 32(5), 1665-1688. https://doi.org/10.1105/tpc.19.00970
Ramos, A. R., Ghosh, S., & Erneux, C. (2019). The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease. Journal of Lipid Research, 60(2), 276-286. https://doi.org/10.1194/jlr.r087908
Radanović, T., & Ernst, R. (2021). The Unfolded Protein Response as a Guardian of the Secretory Pathway. Cells, 10(11), 2965. https://doi.org/10.3390/cells10112965
Reich, S., Nguyen, C. D. L., Has, C., Steltgens, S., Soni, H., Coman, C., Freyberg, M., Bichler, A., Seifert, N., Conrad, D., Knobbe-Thomsen, C. B., Tews, B., Toedt, G., Ahrends, R., & Medenbach, J. (2020). A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16747-y
Rouillard, A. D., Gundersen, G. W., Fernandez, N. F., Wang, Z., Monteiro, C. D., McDermott, M. G., & Ma'ayan, A. (2016). The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database, 2016, baw100. https://doi.org/10.1093/database/baw100
Sanchez, A. M., Garg, A., Shuman, S., & Schwer, B. (2019). Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination. Nucleic Acids Research, 47(16), 8452-8469. https://doi.org/10.1093/nar/gkz567
Sarikaya, E., Sabha, N., Volpatti, J., Pannia, E., Maani, N., Gonorazky, H. D., Celik, A., Liang, Y., Onofre-Oliveira, P., & Dowling, J. J. (2022). Natural history of a mouse model of x-linked myotubular myopathy. Disease Models & Mechanisms, 15(7). https://doi.org/10.1242/dmm.049342
Shamu, Caroline E., et al. “The Unfolded-protein-response Pathway in Yeast.” Trends in Cell Biology, vol. 4, no. 2, Feb. 1994, pp. 56-60. Science Direct, https://doi.org/10.1016/0962-8924(94)90011-6
Schaffer, W. M., & Bronnikova, T. V. (2012). Peroxidase-ROS interactions. Nonlinear Dynamics, 68(3), 413-430. https://doi.org/10.1007/s11071-011-0314-x
Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50(W1), W216-W221. https://doi.org/10.1093/nar/gkac194
Shimada, T. L., & Hara-Nishimura, I. (2010). Oil-Body-Membrane proteins and their physiological functions in plants. Biological and Pharmaceutical Bulletin, 33(3), 360-363. https://doi.org/10.1248/bpb.33.360
Snapp, E. (2012). Unfolded Protein Responses With or Without Unfolded Proteins? Cells, 1(4), 926–950. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cells1040926
Starodubtseva, A., Kalachova, T., Retzer, K., Jelínková, A., Dobrev, P., Lacek, J., Pospíchalová, R., Angelini, J., Guivarc'h, A., Pateyron, S., Soubigou-Taconnat, L., Burketová, L., & Ruelland, E. (2022). An arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10458-8
Su, C., Rodriguez-Franco, M., Lace, B., Nebel, N., Hernandez-Reyes, C., Liang, P., Schulze, E., Mymrikov, E. V., Gross, N. M., Knerr, J., Wang, H., Siukstaite, L., Keller, J., Libourel, C., Fischer, A. A. M., Gabor, K. E., Mark, E., Popp, C., Hunte, C., . . . Ott, T. (2023). Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-35976-5
Suliman, M., Case, K. C., Schmidtke, M. W., Lazcano, P., Onu, C. J., Greenberg, M. L. (2022). “Inositol Depletion Regulates Phospholipid Metabolism and Activates Stress Signaling in HEK293T Cells.” BioRXiv, https://doi.org/10.1101/2022.02.21.481362
Termini, C. M., & Gillette, J. M. (2017). Tetraspanins function as regulators of cellular signaling. Frontiers in Cell and Developmental Biology, 5. https://doi.org/10.3389/fcell.2017.00034
Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., & Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and er-associated degradation. Cell, 101(3), 249-258. https://doi.org/10.1016/s0092-8674(00)80835-1
The Uniprot Consortium, Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Garmiri, P., Gonzales, L. J. D. C., Hatton-Ellis, E., Hussein, A., . . . Lussi, Y. (2022). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523-D531. https://doi.org/10.1093/nar/gkac1052
Veith, A., & Moorthy, B. (2018). Role of cytochrome p450s in the generation and metabolism of reactive oxygen species. Current Opinion in Toxicology, 7, 44-51. https://doi.org/10.1016/j.cotox.2017.10.003
Volmer, R., van der Ploeg, K., & Ron, D. (2013). Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4628–4633. https://doi.org/10.1073/pnas.1217611110
Watt, M. E. van der, Reader, J., Churchyard, A., Nondaba, S. H., Lauterbach, S. B., Niemand, J., Abayomi, S., van Biljon, R. A., Connacher, J. I., van Wyk, R. D. J., Le Manach, C., Paquet, T., González Cabrera, D., Brunschwig, C., Theron, A., Lozano-Arias, S., Rodrigues, J. F. I., Herreros, E., Leroy, D., . . . Birkholtz, L.-M. (2018). Potent plasmodium falciparum gametocytocidal compounds identified by exploring the kinase inhibitor chemical space for dual active antimalarials. Journal of Antimicrobial Chemotherapy, 73(5), 1279-1290. https://doi.org/10.1093/jac/dky008
Wei, W., Geer, M. J., Guo, X., Dolgalev, I., Sanjana, N. E., & Neel, B. G. (2023). Genome-wide crispr/cas9 screens reveal shared and cell-specific mechanisms of resistance to shp2 inhibition. Journal of Experimental Medicine, 220(5). https://doi.org/10.1084/jem.20221563
Yang, A. K. M. S. G.-Y., & Shamsuddin, A. K. M. (2015). Inositol & its phosphates: Basic science to practical applications. Bentham Science. https://doi.org/10.2174/97816810800791150101
Ying, J. F., Lu, Z. B., Fu, L. Q., Tong, Y., Wang, Z., Li, W. F., & Mou, X. Z. (2021). The role of iron homeostasis and iron-mediated ROS in cancer. American journal of cancer research, 11(5), 1895–1912. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8167679/
Yu, W., Daniel, J., Mehta, D., Maddipati, K. R., & Greenberg, M. L. (2017). MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PloS one, 12(8), e0182534. https://doi.org/10.1371/journal.pone.0182534
Yuk, C. M., Kim, D., Hong, S., Kim, M., Jeong, H.-W., Park, S. J., Min, H., Kim, W., Kim, S.-G., Seong, R. H., Kim, S., & Lee, S.-H. (2024). Inositol polyphosphate multikinase regulates Th1 and Th17 cell differentiation by controlling Akt-mTOR signaling. BioRχiv. https://doi.org/10.1101/2024.01.08.574595
Zhang, M., Suarez, E., Vasquez, J. L., Nathanson, L., Peterson, L. E., Rajapakshe, K., Basil, P., Weigel, N. L., Coarfa, C., & Agoulnik, I. U. (2018). Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene, 38(7), 1121-1135. https://doi.org/10.1038/s41388-018-0498-3
Zylstra, A., Hadj-Moussa, H., Horkai, D., Whale, A. J., Piguet, B., & Houseley, J. (2023). Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLOS Biology, 21(8), e3002250. https://doi.org/10.1371/journal.pbio.3002250
Published
How to Cite
Issue
Section
Copyright (c) 2024 Shreyas Chakravarty; Arianna Broad

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


