A Neural Network Model to Predict the Effect of Climate Change on West Nile Virus (WNV) Epidemiology

Authors

  • Paras Aggarwal Michael E. DeBakey High School for Health Professions
  • Dr. Claire P Gueneau Michael E. DeBakey High School for Health Professions

DOI:

https://doi.org/10.47611/jsrhs.v13i4.7704

Keywords:

West Nile Virus Disease; Neural Network; Climate Change; Epidemics; Machine Learning

Abstract

West Nile virus (WNV) is a mosquito-borne disease. The virus is transmitted cyclically between mosquitoes and avian hosts. It is influenced by a diverse array of environmental parameters. The prediction of WNV epidemic is challenging since any change in climate conditions and vector ecosystems affect the epidemiology of the WNV. In this study, a neural network (NN) model was developed to capture the non-linear effect of environmental parameters on WNV neuro-invasive disease by using historical disease data for four major cities in the USA. This NN model uses statistical and machine learning techniques to forecast spatial and temporal variation of WNV in other USA cities. This artificial intelligence framework was used further to quantify the correlation between various climate change parameters such as temperature, rainfall, season, and land coverage on WNV. This study addresses key questions on how projected climate change will affect the spatial and temporal dynamics of WNV disease epidemics which is critical to managing spread of the disease.

Downloads

Download data is not yet available.

Author Biography

Dr. Claire P Gueneau, Michael E. DeBakey High School for Health Professions

Mentor AP Research

References or Bibliography

Andrade, C. C., Maharaj, P. D., Reisen, W. K., & Brault, A. C. (2011). North American West Nile virus genotype isolates demonstrate differential replicative capacities in response to temperature. Journal of General Virology, 92(11), 2523–2533. https://doi.org/10.1099/vir.0.032318-0

Barrett, A. D. T. (2014). Economic Burden of West Nile Virus in the United States. The American Journal of Tropical Medicine and Hygiene, 90(3), 389–390. https://doi.org/10.4269/ajtmh.14-0009

Beard, C. B., Eisen, R. J., Barker, C. M., Garofalo, J. F., Hahn, M., Hayden, M., Monaghan, A. J., Ogden, N. H., & Schramm, P. J. (2016). Ch. 5: Vectorborne Diseases. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. https://doi.org/10.7930/j0765c7v

Bowman, C. N., Gumel, A. B., van, Wu, J., & Zhu, H. (2005). A mathematical model for assessing control strategies against West Nile virus. 67(5), 1107–1133. https://doi.org/10.1016/j.bulm.2005.01.002

Centers for Disease Control and Prevention. (2023, June 13). Historic Data (1999-2022) | West Nile Virus | CDC. Www.cdc.gov. https://www.cdc.gov/westnile/statsmaps/historic-data.html

Chase, J. M., & Knight, T. M. (2003). Drought-induced mosquito outbreaks in wetlands. Ecology Letters, 6(11), 1017–1024. https://doi.org/10.1046/j.1461-0248.2003.00533.x

Chen, C., Jenkins, E., Epp, T., Waldner, C., Curry, P., & Soos, C. (2013). Climate Change and West Nile Virus in a Highly Endemic Region of North America. International Journal of Environmental Research and Public Health, 10(7), 3052–3071. https://doi.org/10.3390/ijerph10073052

DeFelice, N. B., Schneider, Z. D., Little, E., Barker, C., Caillouet, K. A., Campbell, S. R., Damian, D., Irwin, P., Jones, H. M. P., Townsend, J., & Shaman, J. (2018). Use of temperature to improve West Nile virus forecasts. PLOS Computational Biology, 14(3), e1006047. https://doi.org/10.1371/journal.pcbi.1006047

Dohm, D. J., O’Guinn, M. L., & Turell, M. J. (2002). Effect of Environmental Temperature on the Ability of Culex pipiens(Diptera: Culicidae) to Transmit West Nile Virus. Journal of Medical Entomology, 39(1), 221–225. https://doi.org/10.1603/0022-2585-39.1.221

Eldridge, B. F. (1987). Diapause and Related Phenomena in Culex Mosquitoes: Their Relation to Arbovirus Disease Ecology. Advances in Soil Science (New York), 1–28. https://doi.org/10.1007/978-1-4612-4712-8_1

Ewing, D. A., Purse, B. V., Cobbold, C. A., & White, S. M. (2021). A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK. Journal of the Royal Society Interface, 18(178), 20210049. https://doi.org/10.1098/rsif.2021.0049

Farajollahi, A., Fonseca, D. M., Kramer, L. D., & Marm Kilpatrick, A. (2011). “Bird biting” mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics and Evolution, 11(7), 1577–1585. https://doi.org/10.1016/j.meegid.2011.08.013

Fasano, A., Riccetti, N., Angelou, A., Gomez-Ramirez, J., Ferraccioli, F., Ioannis Kioutsioukis, & Stilianakis, N. I. (2022). An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-24527-5

Geographic division or region - Health, United States. (2023, June 26). Www.cdc.gov. https://www.cdc.gov/nchs/hus/sources-definitions/geographic-region.html

Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: a regional analysis. Bulletin of the World Health Organization, 78(9), 1136–1147. https://pubmed.ncbi.nlm.nih.gov/11019462/

Gould, E. A., & Higgs, S. (2009). Impact of climate change and other factors on emerging arbovirus diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103(2), 109–121. https://doi.org/10.1016/j.trstmh.2008.07.025

Hamer, G. L., Kitron, U. D., Brawn, J. D., Loss, S. R., Ruiz, M. O., Goldberg, T. L., & Walker, E. D. (2008). Culex pipiens(Diptera: Culicidae): A Bridge Vector of West Nile Virus to Humans. Journal of Medical Entomology, 45(1), 125–128. https://doi.org/10.1093/jmedent/45.1.125

Hort, H. M., Ibaraki, M., & Schwartz, F. W. (2023). Temporal and Spatial Synchronicity in West Nile Virus Cases Along the Central Flyway, USA. GeoHealth, 7(5), e2022GH000708. https://doi.org/10.1029/2022GH000708

Kilpatrick, A. M., Daszak, P., Jones, M. J., Marra, P. P., & Kramer, L. D. (2006). Host heterogeneity dominates West Nile virus transmission. Proceedings of the Royal Society B: Biological Sciences, 273(1599), 2327–2333. https://doi.org/10.1098/rspb.2006.3575

Kilpatrick, A. M., Kramer, L. D., Campbell, S. R., Alleyne, E. O., Dobson, A. P., & Daszak, P. (2005). West Nile Virus Risk Assessment and the Bridge Vector Paradigm. Emerging Infectious Diseases, 11(3), 425–429. https://doi.org/10.3201/eid1103.040364

Koenraadt, C., & Harrington, L. (2008). Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 45(1). https://doi.org/10.1603/0022-2585(2008)45[28:feoroc]2.0.co;2

Kunkel, K. E., Novak, R. J., Lampman, R. L., & Gu, W. (2006). Modeling the impact of variable climatic factors on the crossover of Culex restauns and Culex pipiens (Diptera: culicidae), vectors of West Nile virus in Illinois. The American Journal of Tropical Medicine and Hygiene, 74(1), 168–173. https://pubmed.ncbi.nlm.nih.gov/16407364/

Landesman, W. J., Allan, B. F., Langerhans, R. B., Knight, T. M., & Chase, J. M. (2007). Inter-Annual Associations Between Precipitation and Human Incidence of West Nile Virus in the United States. Vector-Borne and Zoonotic Diseases, 7(3), 337–343. https://doi.org/10.1089/vbz.2006.0590

Langer, J., Dufoe, A., & Brady, J. (2024). U.S. Faces a Rise in Mosquito “Disease Danger Days” Climate Central. https://assets.climatecentral.org/pdfs/August2018_CMN_Mosquitoes.pdf

Mackenzie, J. S., Gubler, D. J., & Petersen, L. R. (2004). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine, 10(S12), S98–S109. https://doi.org/10.1038/nm1144

Marra, P. P., Grigging, S., Caffrey, C. L., Kilpatrick, A. M., McLean, R., Brand, C., Saito, E. M. I., Dupuis, P., Kramer, L., & Novak, R. (2004). West Nile Virus and wildlife. Repository.si.edu. https://repository.si.edu/handle/10088/2930

McLean, R. G., Ubico, S. R., Docherty, D. E., Hansen, W. R., Sileo, L., & McNamara, T. S. (2006). West Nile Virus Transmission and Ecology in Birds. Annals of the New York Academy of Sciences, 951(1), 54–57. https://doi.org/10.1111/j.1749-6632.2001.tb02684.x

Min, J. G., & Xue, M. (1996). Progress in studies on the overwintering of the mosquito Culex tritaeniorhynchus. The Southeast Asian Journal of Tropical Medicine and Public Health, 27(4), 810–817. https://pubmed.ncbi.nlm.nih.gov/9253890/

Moudy, R. M., Meola, M. A., Morin, L.-L. L., Ebel, G. D., & Kramer, L. D. (2007). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. The American Journal of Tropical Medicine and Hygiene, 77(2), 365–370. https://pubmed.ncbi.nlm.nih.gov/17690414/

Multi-Resolution Land Characteristics (MRLC) consortium. (2023). Data. Mrlc.gov. http://www.mrlc.gov/data

Nelms, B. M., Macedo, P. G., Kothera, L., Savage, H. M., & Reisen, W. K. (2013). Overwintering Biology of Culex (Diptera: Culicidae) Mosquitoes in the Sacramento Valley of California. 50(4), 773–790. https://doi.org/10.1603/me12280

National Oceanic and Atmospheric Administration. (2024). Datasets | Climate Data Online (CDO) | National Climatic Data Center (NCDC). Www.ncei.noaa.gov. https://www.ncei.noaa.gov/cdo-web/datasets

Paz, S. (2015). Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20130561–20130561. https://doi.org/10.1098/rstb.2013.0561

Paz, S., Malkinson, D., Green, M. S., Tsioni, G., Papa, A., Danis, K., Sirbu, A., Ceianu, C., Katalin, K., Ferenczi, E., Zeller, H., & Semenza, J. C. (2013). Permissive summer temperatures of the 2010 European West Nile fever upsurge. PloS One, 8(2), e56398. https://doi.org/10.1371/journal.pone.0056398

Paz, S., & Semenza, J. (2013). Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review. International Journal of Environmental Research and Public Health, 10(8), 3543–3562. https://doi.org/10.3390/ijerph10083543

Peterson, L. R., Carson, P. J., Biggerstaff, B. J., Custer, B., Borchardt, S. M., & Busch, M. P. (2012). Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010. Epidemiology and Infection, 141(3), 591–595. https://doi.org/10.1017/s0950268812001070

Reisen, W., Cayan, D., Tyree, M., Barker, C. M., Eldridge, B., & Dettinger, M. (2008). Impact of climate variation on mosquito abundance in California. Journal of Vector Ecology, 33(1), 89–98. https://doi.org/10.3376/1081-1710(2008)33[89:iocvom]2.0.co;2

Reisen, W., Lothrop, H., Chiles, R., Madon, M., Cossen, C., Woods, L., Husted, S., Kramer, V., & Edman, J. (2004). West Nile Virus in California. Emerging Infectious Diseases, 10(8), 1369–1378. https://doi.org/10.3201/eid1008.040077

Roehr, B. (2012). US hit by massive West Nile virus outbreak centred around Texas. BMJ, 345(aug21 2), e5633–e5633. https://doi.org/10.1136/bmj.e5633

Ronca, S. E., Murray, K. O., & Nolan, M. S. (2019). Cumulative Incidence of West Nile Virus Infection, Continental United States, 1999–2016. Emerging Infectious Diseases, 25(2), 325–327. https://doi.org/10.3201/eid2502.180765

Ruiz, M. O., Chaves, L. F., Hamer, G. L., Sun, T., Brown, W. M., Walker, E. D., Haramis, L., Goldberg, T. L., & Kitron, U. D. (2010). Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites & Vectors, 3(1), 19. https://doi.org/10.1186/1756-3305-3-19

SAS Institute Inc. (2022). JMP Statistical Software. https://www.jmp.com/en_us/home.html

Sellers, R. F., & Maarouf, A. R. (1990). Trajectory analysis of winds and eastern equine encephalitis in USA, 1980–5. Epidemiology and Infection, 104(2), 329–343. https://doi.org/10.1017/s0950268800059501

Staples, J. E., Shankar, M. B., Sejvar, J. J., Meltzer, M. I., & Fischer, M. (2014). Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease. The American Journal of Tropical Medicine and Hygiene, 90(3), 402–409. https://doi.org/10.4269/ajtmh.13-0206

Turell, M. J., O’Guinn, M. L., Dohm, D. J., & Jones, J. W. (2001). Vector Competence of North American Mosquitoes (Diptera: Culicidae) for West Nile Virus. Journal of Medical Entomology, 38(2), 130–134. https://doi.org/10.1603/0022-2585-38.2.130

United States Census Bureau. (2023). Index of /programs-surveys/popest/tables. Census.gov. https://www2.census.gov/programs-surveys/popest/tables/

Wimberly, M. C., Hildreth, M. B., Boyte, S. P., Lindquist, E., & Kightlinger, L. (2008). Ecological Niche of the 2003 West Nile Virus Epidemic in the Northern Great Plains of the United States. PLoS ONE, 3(12), e3744. https://doi.org/10.1371/journal.pone.0003744

Published

11-30-2024

How to Cite

Aggarwal, P., & Gueneau, C. P. (2024). A Neural Network Model to Predict the Effect of Climate Change on West Nile Virus (WNV) Epidemiology. Journal of Student Research, 13(4). https://doi.org/10.47611/jsrhs.v13i4.7704

Issue

Section

AP Capstone™ Research